Preparation of WO3 on TiO2 Nanotubes for Electrochromic-enhanced Photocatalytic Activity

Main Article Content

Atsakorn Chuenkruit
Watcharaporn Thongjoon
Montri Aiempanakit
Chantana Aiempanakit
Kamon Aiempanakit

Abstract

The aim of this study was to enhance photocatalytic activity through an electrochromic process. Multilayer films comprising WO3 deposited on TiO2 nanotubes (TNTs) were fabricated on ITO (indium tin oxide) glass substrates. The TNTs layers were synthesized via the anodization of Ti films, with variations in the deionized water content (1, 3, and 5 wt%) in ethylene glycol and NH4F as electrolyte solutions. The results revealed that the DI water ratios during anodization significantly affected the morphological and crystalline characteristics of the TNTs. At a 3 wt% deionized water ratio, the TNTs exhibited an aligned nanotube structure and a larger crystallite size of the anatase phase. At a 5 wt% DI water ratio, degradation in both the crystalline characteristics and morphology of TNTs was observed. Furthermore, the photocatalytic performance of the TNTs and the WO3 films deposited on the TNTs (WTNTs) samples was investigated to compare between pre-colored and colored states by examining their degradation rates of methylene blue solution under 300 µW/cm2 ultraviolet irradiation. The results of the colored states analysis indicated that the WO3 layer enhanced color efficiency by increasing absorption, resulting in the generation of more electron-hole pairs. Consequently, this state exhibited a significantly higher degradation rate compared to the pre-colored state.

Article Details

Section
Original Research Articles

References

Alves, I., Byzynski, G., Dawson, M., & Ribeiro, C. (2017). Charge transfer mechanism of WO3 /TiO2 heterostructure for photoelectrochemical water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 339, 95-102. https://doi.org/10.1016/j.jphotochem.2017.02.024

Arvizu, M. A., Triana, C. A., Stefanov, B., Claes‐Göran Granqvist, & Niklasson, G. A. (2014). Electrochromism in sputter-deposited W–Ti oxide films: Durability enhancement due to Ti. Solar Energy Materials and Solar Cells, 125, 184-189. https://doi.org/10.1016/j.solmat.2014.02.037

Bae, S., Shim, E., Yoon, J., & Joo, H. (2008). Enzymatic hydrogen production by light-sensitized anodized tubular TiO2 photoanode. Solar Energy Materials and Solar Cells, 92(4), 402-409. https://doi.org/10.1016/j.solmat.2007.09.019

Bogati, S., Georg, A., & Graf, W. (2017). Photoelectrochromic devices based on sputtered WO3 and TiO2 films. Solar Energy Materials and Solar Cells, 163, 170-177. https://doi.org/10.1016/j.solmat.2017.01.016

Cai, G., Cui, M., Kumar, V., Darmawan, P., Wang, J., Wang, X., Eh, A. L.-S., Qian, K., & Lee, P. S. (2016). Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chemical Science, 7(2), 1373-1382. https://doi.org/10.1039/c5sc03727a

Cao, L., Yuan, J., Chen, M., & Shangguan, W. (2010). Photocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique. Journal of Environmental Sciences, 22(3), 454-459. https://doi.org/10.1016/s1001-0742(09)60129-7

Chin, L. Y., Zainal, Z., Khusaimi, Z., & Ismail, S. S. (2016). Electrochemical synthesis of ordered titania nanotubes in mixture of ethylene glycol and glycerol electrolyte. Malaysian Journal of Analytical Science, 20(2), 373-381. https://doi.org/10.17576/mjas-2016-2002-21

Corrente, G. A., Cospito, S., Capodilupo, A. L., & Beneduci, A. (2020). Mixed-valence compounds as a new route for electrochromic devices with high coloration efficiency in the whole Vis-NIR region. Applied Sciences, 10 (23), Article 8372. https://doi.org/10.3390/app10238372

Dell’Edera, M., Lo Porto, C., De Pasquale, I., Petronella, F., Curri, M. L., Agostiano, A., & Comparelli, R. (2021). Photocatalytic TiO2-based coatings for environmental applications. Catalysis Today, 380, 62-83. https://doi.org/10.1016/j.cattod.2021.04.023

Deshpande, R., Lee, S. H., Mahan, A. H., Parilla, P. A., Jones, K. M., Norman, A. G., To, B., Blackburn, J. L., Mitra, S., & Dillon, A. C. (2007). Optimization of crystalline tungsten oxide nanoparticles for improved electrochromic applications. Solid State Ionics, 178(13-14), 895-900. https://doi.org/10.1016/j.ssi.2007.03.010

Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5-8), 53-229. https://doi.org/10.1016/s0167-5729(02)00100-0

Dozzi, M. V., Marzorati, S., Longhi, M., Coduri, M., Artiglia, L., & Selli, E. (2016). Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Applied Catalysis B: Environmental, 186, 157-165. https://doi.org/10.1016/j.apcatb.2016.01.004

El-Yazeed, W. S. A., & Ahmed, A. I. (2019). Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue. Inorganic Chemistry Communications, 105, 102-111. https://doi.org/10.1016/j.inoche.2019.04.034

Fang, H.-T., Liu, M., Wang, D.-W., Sun, T., Guan, D.-S., Li, F., Zhou, J., Sham, T.-K., & Cheng, H.-M. (2009). Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology, 20(22), Article 225701. https://doi.org/10.1088/0957-4484/20/22/225701

Garlisi, C., Scandura, G., Yusuf, A., & Al Jitan, S. (2021). Functionalization of glass by TiO2-based self-cleaning coatings. In F. Parrino & L. Palmisano (Eds.). Titanium Dioxide (TiO2) and Its Applications, (pp. 395-428). Elsevier. https://doi.org/10.1016/b 978-0-12-819960-2.00009-2

Hauch, A., Georg, A., Krašovec, U. O. & Orel, B. (2002). Comparison of photoelectrochromic devices with different layer configurations. Journal of the Electrochemical Society, 149(9), Article H159. https://doi.org/10.1149/1.1496487

Her, Y.-C., & Chang, C.-C. (2014). Facile synthesis of one-dimensional crystalline/amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties. CrystEngComm, 16(24), 5379-5386. https://doi.org/10.1039/c4ce00430b

Huo, X., Zhang, H., Shen, W., Miao, X., Zhang, M., & Guo, M. (2019). Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance. Journal of Materials Chemistry. A, 7(28), 16867-16875. https://doi.org/10.1039/c9ta03725j

Indira, K., Mudali, U. K., Nishimura, T., & Rajendran, N. (2015). A Review on TiO2 nanotubes: Influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio- and Tribo-Corrosion, 1(4), Article 28. https://doi.org/10.1007/s40735-015-0024-x

Ivanov, S., Cheng, L., Wulfmeier, H., Albrecht, D., Fritze, H., & Bund, A. (2013). Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes. Electrochimica Acta, 104, 228-235. https://doi.org/10.1016/j.electacta.2013.04.115

Junbang, P., Aiempanakit, M., Aiempanakit, C., & Aiempanakit, K., (2024). Influences of sputtering power and the surface roughness of substrates on the microstructures of sputtered Ti films and anodized TiO2 nanotubes. Physica B: Condensed Matter, 688, Article 416130. https://doi.org/10.1016/j.physb.2024.416130

Karuppasamy, A. (2015). Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering. Applied Surface Science, 359, 841-846. https://doi.org/10.1016/j.apsusc.2015.10.020

Karuppasamy, K. M., & Subrahmanyam, A. (2008). The electrochromic and photocatalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films. Solar Energy Materials and Solar Cells, 92(11), 1322-1326. https://doi.org/10.1016/j.solmat.2008.05.004

Kato, K., & Shirai, T. (2022). Highly efficient water purification by WO3-based homo/heterojunction photocatalyst under visible light. Journal of Alloys and Compounds, 901, Article 163434. https://doi.org/10.1016/j.jallcom.2021.163434

Liu, Y., Jiang, S. P., & Shao, Z. (2020). Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Materials Today Advances, 7, Article 100072. https://doi.org/10.1016/j.mtadv.2020.100072

Niklasson, G. A., & Granqvist, C. G. (2007). Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. Journal of Materials Chemistry, 17(2), 127-156. https://doi.org/10.1039/b612174h

Ozkan, E., Lee, S.-H., Tracy, C. E., Pitts, J. R., & Deb, S. K. (2003). Comparison of electrochromic amorphous and crystalline tungsten oxide films. Solar Energy Materials and Solar Cells, 79(4), 439-448. https://doi.org/10.1016/s0927-0248(03)00019-9

Padmanabhan, N. T., Thomas, N., Louis, J., Mathew, D. T., Ganguly, P., John, H., & Pillai, S. C. (2021). Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 271, Article 129506. https://doi.org/10.1016/j.chemosphere.2020.129506

Reyes-Gil, K. R., Stephens, Z. D., Stavila, V., & Robinson, D. B. (2013). Composite wo3/tio2 nanostructures for high electrochromic activity. ACS Applied Materials and Interfaces, 7(4), 2202-2213. https://doi.org/10.1021/am5050696

Riyanto, E., Kristiantoro, T., Martides, E., Dedi, Prawara, B., Mulyadi, D., & Suprapto. (2023). Lithium-ion battery performance improvement using two-dimensional materials. Materials Today: Proceedings, 87(Part 2), 164-171. https://doi.org/10.1016/j.matpr.2023.02.392

Saharudin, K. A., Sreekantan, S., Mydin, R. B. S. N. M., Basiron, N., & Krengvirat, W. (2018). Factor affecting geometry of TiO2 nanotube arrays (TNAs) in aqueous and organic electrolyte. In D. Yang (Ed.). Titanium dioxide-material for a sustainable environment (pp. 117-130). InTechOpen. https://doi.org/10.5772/intechopen.74193

Saitow, K., Wang, Y., & Takahashi, S. (2018). Mechano-synthesized orange TiO2 shows significant photocatalysis under visible light. Scientific Reports, 8(1), Article 15549. https://doi.org/10.1038/s41598-018-33772-6

Sajan, C. P., Naik, A., & Girish, H. N. (2017). Hydrothermal fabrication of WO3-modified TiO2 crystals and their efficiency in photocatalytic degradation of FCF. International Journal of Environmental Science and Technology, 14(7), 1513-1524. https://doi.org/10.1007/s13762-016-1239-1

Smith, W. A., & Zhao, Y. (2008). Enhanced photocatalytic activity by aligned WO3/TiO2 two-layer nanorod arrays. The Journal of Physical Chemistry C, 112(49), 19635-19641. https://doi.org/10.1021/jp807703d

Suhadolnik, L., Marinko, Ž., Ponikvar-Svet, M., Tavčar, G., Kovač, J., & Čeh, M. (2020). Influence of anodization-electrolyte aging on the photocatalytic activity of TiO2 nanotube arrays. The Journal of Physical Chemistry C, 124(7), 4073-4080. https://doi.org/10.1021/acs.jpcc.9b09522

Thakur, S., Samriti, Ojha, A., & Prakash, J. (2023). Introduction to semiconductor photocatalyst nanomaterials: properties, modifications, and multifunctional applications. In J. Prakash, J. Cho, B. C. Janegitz, & S. Sun (Eds.). Multifunctional hybrid semiconductor photocatalyst nanomaterials (pp. 1-30). Springer. https://doi.org/10.1007/978-3-031-39481-2_1

Thongjoon, W., Aiempanakit, K., Aiempanakit, M., & Aiempanakit, C. (2024). Influence of annealing times for W films on the structure and electrochromic properties of anodized WO3 films. Journal of Metals Materials and Minerals, 34(2), Article 1969. https://doi.org/10.55713/jmmm.v34i2.1969

Vasilaki, E., Vernardou, D., Kenanakis, G., Vamvakaki, M., & Katsarakis, N. (2017). TiO2/WO3 photoactive bilayers in the UV–Vis light region. Applied Physics A, 123(4), Article 231. https://doi.org/10.1007/s00339-017-0837-1

Wahyuono, R., Ernawati, L., Maharsih, I., Widiastuti, N., & Widiyandari, H. (2019). Mesoporous WO3/TiO2 nanocomposites photocatalyst for rapid degradation of methylene blue in aqueous medium. International Journal of Engineering, 32(10), 1345-1352. https://doi.org/10.5829/ije.2019.32.10a.02

Wu, S., Sun, H., Duan, M., Mao, H., Wu, Y., Zhao, H., & Lin, B. (2023). Applications of thermochromic and electrochromic smart windows: Materials to buildings. Cell Reports Physical Science, 4(5), Article 101370. https://doi.org/10.1016/j.xcrp.2023.101370

Ya, H., Wang, B., Chen, F., Han, Y., Zhang, W., Wu, X., Li, R., Jiang, Q., Jia, X., & Wei, F. (2021). Electrochromic materials based on ions insertion and extraction. Advanced Optical Materials, 10(4), Article 2101783. https://doi.org/10.1002/adom.202101783

Yao, S., Zhang, Y., Cai, J., Hong, Y., Wang, Y., Cui, J., Shu, X., Liu, J., Tan, H. H. & Wu, Y. (2024). Construction of electrochromic porous NiO/Ni(OH)2 hybrid nanoarrays with ultra-large optical modulation. Journal of Electroanalytical Chemistry, 954, Article 118047. https://doi.org/10.1016/j.jelechem.2024.118047

Yu, H., Chen, J., Zhang, S., Yu, Y., Wang, S., & Ye, M. (2022). Effects of electrolyte composition on the growth and properties of titanium oxide nanotubes. Electrochemistry Communications, 135, Article 107217. https://doi.org/10.1016/j.elecom.2022.107217

Zhang, L., Guo, J., Hao, B., & Ma, H. (2022). WO3/TiO2 heterojunction photocatalyst prepared by reactive magnetron sputtering for Rhodamine B dye degradation. Optical Materials, 133, Article 113035. https://doi.org/10.1016/j.optmat.2022.113035

Zhao, S., Wang, B., Zhu, N., Huang, Y., Wang, F., Li, R., Zhao, Y., Jiang, Q., Wu, X., & Zhang, R. (2022). Dual‐band electrochromic materials for energy‐saving smart windows. Carbon Neutralization, 2(1), 4-27. https://doi.org/10.1002/cnl2.38

Zhen, Y., Jelle, B. P., & Gao, T. (2020). Electrochromic properties of WO3 thin films: The role of film thickness. Analytical Science Advances, 1(2), 124-131. https://doi.org/10.1002/ansa.202000072

Zheng, H., Ou, J. Z., Strano, M. S., Kaner, R. B., Mitchell, A., & Kalantar-zadeh, K. (2011). Nanostructured tungsten oxide - properties, synthesis, and applications. Advanced Functional Materials, 21(12), 2175-2196. https://doi.org/10.1002/adfm.201002477

Zhou, X., Huang, E., Zhang, R., Xiang, H., Zhong, W., & Xu, B. (2023). Multicolor tunable electrochromic materials based on the Burstein–Moss effect. Nanomaterials, 13(10), Article 1580. https://doi.org/10.3390/nano13101580

Zhou, H., Wang, H., Yue, C., He, L., Li, H., Zhang, H., Yang, S., & Ma, T. (2024). Photocatalytic degradation by TiO2-conjugated/coordination polymer heterojunction: Preparation, mechanisms, and prospects. Applied Catalysis B: Environment and Energy, 344, Article 123605. https://doi.org/10.1016/j.apcatb.2023.123605