Identification of Respiratory Patterns and Quality Assessment Between Melons Inodorus and Cantalupensis Groups
Main Article Content
Abstract
Two econommically significant melon groups, inodorus and cantalupensis, exhibit distinct differences in their respiration activity, which can significantly affect their postharvest quality and storage behavior. Identifying the two groups of melons is essential for determining the most effective postharvest handling practices. The aims of this study were to reveal the respiratory patterns of inodorus and cantalupensis melon-groups and to investigate their relationship to fruit quality for informing optimal postharvest handling. The treatments used were two groups of melons, inodorus and cantalupensis, with five replications (each treatment used three melon fruit samples). The fruit was stored in a modified drum with lighting, CO2 detector, temperature and humidity detector, and had been sterilized. The data were analyzed using F-test and mean comparisons with standard deviation. Subsequently, a post-hoc LSD was applied to identify significant differences and Pearson correlation was employed to examine the relationship among the parameters observed. The results indicated that CO2 concentration influenced the respiration rate and affected the fruit’s physical and nutritional characteristics. Cantalupensis exhibited a higher respiration rate than inodorus, leading to a shorter shelf life and a more noticeable decline in fruit quality. There was a positive correlation between CO2 and respiration rate (R= 0.28), causing reduced edible parts, total soluble solids (TSS), water content, and vitamin C in both melon groups. This study highlights that the respiratory patterns of the two melon groups differ, with cantalupensis being climacteric and inodorus non-climacteric. Therefore, tailoring of the postharvest handling practices for the two melon groups is required to prevent significant quality loss.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Aini, N., Setyawati, R., Alyani, M., Sustriawan, B., & Kurniawan, R. E. K. (2023). Processing sky rocket melon into jam with various acidifiers and sugar concentrations. ICSARD, 30, 230-243.
Asrey, R., Sharma, S., Barman, K., Prajapati, U., Negi, N., & Meena, N. K. (2023). Biological and postharvest interventions to manage the ethylene in fruits: a review. Sustainable Food Technology, 1(6), 803-826. https://doi.org/10.1039/d3fb00037k
Ayres, E. M. M., Lee, S. M., Boyden, L., & Guinard, J. X. (2019). Sensory properties and consumer acceptance of cantaloupe melon cultivars. Journal of Food Science, 84(8), 2278-2288. https://doi.org/10.1111/1750-3841.14724
Azam, M. M., Saad, A., & Amer, B. M. A. (2022). Assessment of the quality losses of cantaloupe fruit during transportation. Processes, 10(6), Article 1187. https://doi.org/10.3390/pr10061187
Brizzolara, S., Manganaris, G. A., Fotopoulos, V., Watkins, C. B., & Tonutti, P. (2020). Primary metabolism in fresh fruits during storage. Frontiers in Plant Science, 11, Article 80. https://doi.org/10.3389/fpls.2020.00080
Chen, Y., Grimplet, J., David, K., Castellarin, S. D., Terol, J., Wong, D. C. J., Luo, Z., Schaffer, R., Celton, J.-M., Talon, M., Gambetta, G. A., & Chervin, C. (2018). Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Science, 276, 63-72. https://doi.org/10.1016/j.plantsci.2018.07.012
Chikh-Rouhou, H., Tlili, I., Ilahy, R., R'Him, T., & Sta-Baba, R. (2021). Fruit quality assessment and characterization of melon genotypes. International Journal of Vegetable Science, 27(1), 3-19. https://doi.org/10.1080/19315260.2019.1692268
Fang, Y., & Wakisaka, M. (2021). A review on the modified atmosphere preservation of fruits and vegetables with cutting-edge technologies. Agriculture, 11(10), Article 992. https://doi.org/10.3390/agriculture11100992
Farcuh, M., Rivero, R. M., Sadka, A., & Blumwald, E. (2018). Ethylene regulation of sugar metabolism in climacteric and non-climacteric plums. Postharvest Biology and Technology, 139, 20-30. https://doi.org/10.1016/j.postharvbio.2018.01.012
Farczádi, L., Moldovan, H., Duca, R. C., & Imre, S. (2022). A quick, simple, sensitive and selective LC-MS/MS method used for the screening of ethephon, glyphosate and aminomethylohosphonic acid from water and food samples. Acta Biologica Marisiensis, 5(1) 41-54. https://doi.org/10.2478/abmj-2022-0005
Fuentes, L., Figueroa, C. R., & Valdenegro, M. (2019). Recent advances in hormonal regulation and cross-talk during non-climacteric fruit development and ripening. Horticulturae, 5(2), Article 45. https://doi.org/10.3390/horticulturae5020045
Gidado, M. J., Gunny, A. A. N., Gopinath, S. C. B., Ali, A., Wongs-Aree, C., & Salleh, N. H. M. (2024). Challenges of postharvest water loss in fruits: Mechanisms, influencing factors, and effective control strategies - a comprehensive review. Journal of Agriculture and Food Research, 17, Article 101249. https://doi.org/10.1016/j.jafr.2024.101249
Hasan, M. U., Singh, Z., Shah, H. M. S., Kaur, J., & Woodward, A. (2024). Water loss: a postharvest quality marker in apple storage. Food and Bioprocess Technology, 17, 2155-2080. https://doi.org/10.1007/s11947-023-03305-9
Hou, J., Yan, D., Huang, M., Zeng, K., & Yao, S. (2022). Alteration of pectin metabolicm in blood orange fruit (Citrus sinensis cv. Tarocco) in response to vesicle collapse. Food Quality and Safety, 6, Article fyac050. https://doi.org/10.1093/fqsafe/fyac050
Jing, S., Lingcheng, Z., Xi, L., Yunjing, P., Baiquan, M., Fengwang, M., & Mingjun, L. (2022). Research progress on sugar metabolism and concentration regulation in fruit. Journal of Fruit Science, 39(2), 266-279.
Jung-Soo, L., Min-Sun, C., & Cheon-Soon, J. (2020). Changes in quality factors of 'honey one' melon during storage at different temperature. Horticultural Science and Technology, 38(2), 249-262. https://doi.org/10.7235/HORT.20200024
Kasim, R., Bintoro, N., Rahayoe, S., & Pranoto, Y. (2022). Effect of temperature and relative humidity on the respiration rate of coated banana (Musa acuminata). IOP Conference Series: Earth and Environmental Science,1083, Article 012026. https://doi.org/10.1088/1755-1315/1083/1/012026
Kasso, M., & Bekele, A. (2018). Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17, 88-96. https://doi.org/10.1016/j.jssas.2016.01.005
Krupa, T., & Tomala, K. (2021). Effect of oxygen and carbon dioxide concentration on the quality of Minikiwi fruits after storage. Agronomy, 11(11), Article 2251. https://doi.org/10.3390/agronomy11112251
Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., Monforte, A. J., & Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16, Article 28. https://doi.org/10.1186/s12863-015-0183-2
Li, M., Han, D., & Liu, W. (2019). Non-destructive measurement of soluble solids content of three melon cultivars using portable visible/near infrared spectroscopy. Biosystems Engineering, 188, 31-39. https://doi.org/10.1016/j.biosystemseng.2019.10.003
Liu, J., Zhao, Y., Xu, H., Zhao, X., Tan, Y., Li, P., Li, D., Tao, Y., & Liu, D. (2021). Fruit softening correlates with enzymatic activities and compositional changes in fruit cell wall during growing in Lycium barbarum L. International Journal of Food Science and Technology, 56(6), 3044-3054. https://doi.org/10.1111/ijfs.14948
Lu, J., Qi, S., Liu, R., Zhou, E., Song, S., & Han, D. (2015). Nondestructive determination of soluble solids and firmness in mix-cultivar melon using near-infrared CCD spectroscopy. Journal of Innovative Optical Health Science, 8(6), Article 1550032. https://doi.org/10.1142/S1793545815500327
Lufu, R., Ambaw, A., & Opara, U. L. (2019). The contribution of transpiration and respiration processes in the mass loss of pomegranate fruit (cv. Wonderful). Postharvest Biology and Technology, 157, Article 110982. https://doi.org/10.1016/j.postharvbio.2019.110982
Manchali, S., Murthy, K. N. C., Vishnuvardana, V., & Patil, B. S. (2021). Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants, 10(9), Article 1755. https://doi.org/10.3390/plants10091755
Moon, K. M., Kwon, E.-B., Lee, B., & Kim, C. Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), Article 2754. https://doi.org/10.3390/molecules25122754
Moya-León, M. A., Mattus-Araya, E., & Herrera, R. (2019). Molecular events occuring during softening of strawberry fruit. Frontiers in Plant Science, 10, Article 00615. https://doi.org/10.3389/fpls.2019.00615
Obando-Ulloa, J. M., Moreno, E., Garcia-Mas, J., Nicolai, B., Lammertyn, J., Monforte, A. J., & Fernandez-Trujillo, J. P. (2008). Climacteric or non-climacteric behavior in melon fruit: 1. Aroma volatiles. Postharvest Biology and Technology, 49(1), 27-37. https://doi.org/10.1016/j.postharvbio.2007.11.004
Paul, V., Pandey, R., & Srivastava, G. C. (2012). The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubility of ethylene - An overview. Journal of Food Science and Technology, 49(1), 1-21. https://doi.org/10.1007/s13197-011-0293-4
Pham, T. T., Nguyen, L. L. P., Dam, M. S., & Baranyai, L. (2023). Application of edible coating in extension of fruit shelf life: review. AgriEngineering, 5(1), 520-536. https://doi.org/10.3390/agriengineering5010034
Qiang, Z., Wenting, D., Jixin, L., & Xinwen, J. (2020). Effects of sugar metabolism on post-ripening and softening of melon fruits. Food and Fermentation Industries, 46(1), 112-117. https://doi.org/10.13995/j.cnki.11-1802/ts.021992
Salomão, L. C. C., Cecon, P. R., Aquino, C. F., de Lins, L. C. R., & Braga, L. R. (2016). Chemical and physical characteristics of 'improved sunrise solo line 72-12' papaya fruits submitted to different mechanical damage. Revista Brasileira de Fruticultura, 38(4), Article e-095. https://doi.org/10.1590/0100-29452016095
Silva, G. M. C., Morales, L. M. M., Santara, D. B., Santa-Catarina, C., & de Oliveira, J. G. (2024). The alternative respiration is linked with the ascorbate synthesis capacity in climacteric and non-climacteric fruit mitochondria. Postharvest Biology and Technology, 210, Article 112780. https://doi.org/10.1016/j.postharvbio.2024.112780
Strano, M. C., Altieri, G., Allegra, M., Renzo, G. C. D., Paterna, G., Matera, A., & Genovese, F. (2022). Postharvest technologies of fresh citrus fruit: advances and recent developments for the loss reduction during handling and storage. Horticulturae, 8(7), Article 612. https://doi.org/10.3390/horticulturae8070612
Stroka, M. A., Reis, L., Los, K. K. D. S., Pinto, C. A., Gustani, F. M., Forney, C. F., Etto, R. M., Galvao, C. W., & Ayub, R. A. (2024). The maturation profile triggers differential expression of sugar metabolism genes in melon fruits. Plant Physiology and Biochemistry, 207, Article 108418. https://doi.org/10.1016/j.plaphy.2024.108418
Sun, X., Baldwin, E. A., Manthey, J., Dorado, C., Rivera, T., & Bai, J. (2022). Effect of preprocessing storage temperature and time on the physicochemical properties of winter melon juice. Journal of Food Quality, 2022, Article 3237639. https://doi.org/10.1155/2022/3237639
Tipu, M. M. H., & Sherif, S. M. (2024). Ethylene and its crosstalk with hormonal pathways in fruit ripening: mechanisms, modulation, and commercial exploitation. Frontiers in Plant Science, 15, Article 1475496. https://doi.org/10.3389/fpls.2024.1475496
Tiwari, I., Shah, K. K., Tripathi, S., Modi, B., Shrestha, J., Pandey, H. P., Bhattarai, B. P., & Rajbhandari, B. P. (2020). Post-harvest practices and loss assessment in tomato (Solanum lycopersicum L.) in Kathmandu, Nepal. Journal of Agriculture and Natural Resources, 3(2), 335-352. https://doi.org/10.3126/janr.v3i2.32545
Tran, K., Mactal, L. P., Cromer, M. R., Vocque, R. H., & Smith, R. E. (2013). Development and validation of ethylenethiourea determination in foods using methanol-based extraction, solid-phase extraction cleanup and LC-MS/MS. Food Chemistry, 149(1-2), 340-342. https://doi.org/10.1016/j.foodchem.2013.02.029
Tyl, C., & Sadler, G. D. (2017). pH and titratable acidity. In S. S. Nielsen (Ed.). Food Analysis (5th ed., pp. 389-406). Springer. https://doi.org/10.1007/978-3-319-45776-5_22
Wang, Y.-W., Acharya, T. P., Malladi, A., Tsai, H.-J., NeSmith, D. S., Doyle, J. W., & Nambeesan, S. U. (2022). Atypical climacteric and functional ethylene metabolicm and signaling during fruit ripening in blueberry (Vaccinium sp.). Frontiers in Plant Science, 13, Article 932642. https://doi.org/10.3389/fpls.2022.932642
Widodo, W. D., Suketi, K., & Rahardjo, R. (2019). Evaluasi kematangan pascapanen pisang barangan untuk menentukan waktu panen terbaik berdasarkan akumulasi satuan panas. [Postharvest maturity evaluation of banana cv. Barangan to determinate the best harvest time based on heat unit]. Buletin Agrohorti, 7(2), 162-171. https://doi.org/10.29244/agrob.7.2.162-171
Widyanti, E. M., Djenar, N. S., Marlina, A., Widiastuti, E., Hidayatulloh, I., Puspitarini, I., Firdausa, D., & Elizabeth, L. (2022). Pengaruh konsentrasi gliserol dalam edible coating tepung biji nangna dengan penambahan plasticizer gliserol. Fluida, 15(2), 143-149. https://doi.org/10.35313/fluida.v15i2.4419
Widyasanti, A., Nurjanah, S., Wulandari, R., & Mardawati, E. (2017). The effect of storage temperatures on quality of minimally processed cantaloupe melon (Cucumis melo L.) with cassava starch based edible coating application. Journal of Industrial and Information Technology in Agriculture, 1(2), 43-52. https://doi.org/10.24198/jiita.v1i2.12954
Wu, Z., Tu, M., Yang, X., Xu, J., & Yu, Z. (2019). Effect of cutting on the reactive oxygen species accumulation and energy change in postharvest fruit during storage. Scientia Horticulturae, 257, Article 108752. https://doi.org/10.1016/j.scienta.2019.108752
Wu, Z., Tu, M., Yang, X., Xu, J., & Yu, Z. (2020). Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit. Postharvest Biology and Technology, 161, Article 111081. https://doi.org/10.1016/j.postharvbio.2019.111081
Yan, H., Wang, K., Wang, M., Feng, L., Zhang, H., & Wei, X. (2023). QTL mapping and genome-wide association study reveal genetic loci and candidate genes related to soluble solids content in melon. Current Issues in Molecucar Biology, 45(9), 7110-7129. https://doi.org/10.3390/cimb45090450
Yu, W., Ma, P., Sheng, J., & Shen, L. (2024). Arginine and cyteine delat postharvest ripening of tomato fruit by regulating ethylene production. Postharvest Biology and Technology, 216, Article 113052. https://doi.org/10.1016/j.postharvbio.2024.113052
Zhang, W., Wang, Y., Wang, Z., Zhang, Y., Guo, M., & Chen, G. (2024). Epidermal wax damage on Hami melon (Cucumis melo L.) caused by postharvest commercialization induced fruit physiological softening and degradation of pectin polysaccharide nanostructure. Food Hydrocolloids, 151, Article 109841. https://doi.org/10.1016/j.foodhyd.2024.109841
Zhao, P., Ndayambaje, J. P., Liu, X., & Xia, X. (2020). Microbial spoilage of fruits: a review on causes and prevention methods. Food Reviews International, 38(sup. 1), 225-246. https://doi.org/10.1080/87559129.2020.1858859