Stichoneuron calcicola Inthachub, A Potential Source of Acetylcholinesterase Inhibitor and Anti-Inflammatory

Main Article Content

Jiraporn Khwanmunee
Akkarapol Butsuri

Abstract

A major target for the treatment of Alzheimer’s disease (AD) is the inhibition of acetylcholinesterase (AChE) activity to reduce acetylcholine (ACh) hydrolysis. Inflammation is believed to play a role in AD progression. The present study is the first to report the anti-inflammatory and anti-AChE effects of ethyl acetate extracts from the leaves of Stichoneuron calcicola Inthachub, an endangered plant species. The anti-inflammatory activity was determined using nitric oxide (NO) inhibitory assay in LPS-activated RAW 264.7 macrophages. AChE inhibition activity was measured by using a modification of Ellman’s method. The results revealed that the plant extract showed strong potential anti-inflammatory activity with an IC50 value of 4.48±0.04 mg/mL. The plant extract also presented anti-AChE capacity, with an IC50 value of 60.3±0.7 mg/mL. Furthermore, cell viability study using MTT assay revealed that the extract was not cytotoxic to RAW 264.7 cells at concentrations of 1-30 µg/mL. The findings indicate that S. calcicola Inthachub exhibited high potential effects on inflammation and AChE, which may be related to the high content of phenolic compounds and alkaloids in the plant. This endangered plant species could be a high-value medicinal plant and of great medical importance in the development of novel effective drugs for treating and preventing the progression of AD.

Article Details

Section
Original Research Articles

References

Adebayo, S. A., Ondua, M., Shai, L. J., & Lebelo, S. L. (2019). Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants. Journal of Inflammation Research, 12, 195-203.

Aderogba, M. A., Ndhlala, A. R., & Staden, J. V. (2013). Acetylcholinesterase inhibitors from Croton sylvaticus ethyl acetate leaf extract and their mutagenic effects. Natural Product Communications, 8(6), 795-798.

Amelimojarad, M., Amelimojarad, M. & Cui, X. (2024). The emerging role of brain neuroinflammatory responses in Alzheimer’s disease. Frontiers in Aging Neuroscience, 16, Article 1391517. https://doi.org/10.3389/fnagi.2024.1391517

Carmona-Hernández, J. C., Taborda-Ocampo, G. & González-Correa, C. (2021). Folin-Ciocalteu reaction alternatives for higher polyphenol quantitation in Colombian passion fruits. International Journal of Food Science, 2021, Article 8871301. https://doi.org/10.1155/2021/8871301

Carvajal, F. J. & Inestrosa, N. C. (2011). Interactions of AChE with Aβ aggregates in Alzheimer’s brain: Therapeutic relevance of IDN 5706. Frontiers in Molecular Neuroscience, 4, Article 19. https://doi.org/10.3389/fnmol.2011.00019

Chen, L., Wang, R., Wang, X., Luo, Y., & Li, J. (2018). Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chemistry, 239, 260-267.

Chen, Z.-R., Huang, J.-B., Yang, S.-L., & Hong, F.-F. (2022). Role of cholinergic signaling in Alzheimer’s disease. Molecules, 27(6), Article 1816. https://doi.org/10.3390/molecules27061816

Cummings, J. (2018). Lessons learned from Alzheimer disease: Clinical trials with negative outcomes. Clinical and Translational Science, 11(2), 147-152.

Das, U. N. (2012). Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Annual Hepatology, 11(3), 409-411.

de Torre, M. P., Cavero, R. Y., & Calvo, M. I. (2022). Anticholinesterase activity of selected medicinal plants from Navarra Region of Spain and a detailed phytochemical investigation of Origanum vulgare L. ssp. vulgare. Molecules, 27(20), Article 7100. https://doi.org/10.3390/molecules27207100

DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration, 14, Article 32. https://doi.org/10.1186/s13024-019-0333-5

Du, X., Wang, X., & Geng, M. (2018). Alzheimer’s disease hypothesis and related therapies. Translational Neurodegeneration, 7, Article 2. https://doi.org/10.1186/s40035-018-0107-y

Ellman, G. L., Courtney, D. K, Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95.

Falé, P. L. V., Ascensão, L., Serralheiro, M. L., & Haris, P. I. (2012). Interaction between Plectranthus barbatus herbal tea components and acetylcholinesterase: Binding and activity studies. Food and Function, 3(11), 1176-1184.

Ferrari, G. V. D, Canales, M. A., Shin, I., Weiner, L. M., Silman, I., & Inestrosa, N. C. (2001). A structural motif of acetylcholinesterase that promotes amyloid -peptide fibril formation. Biochemistry, 40, 10447-10457.

Gao, C., Jiang, J., Tan, Y. & Chen, S. (2023). Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduction and Targeted Therapy, 8, Article 359. https://doi.org/10.1038/s41392-023-01588-0

Hassan, H. A., Allam, A. E., Abu-Baih, D. H., Mohamed, M. F. A., Abdelmohsen, U. R., Shimizu, K., Desoukey, S. Y., Hayallah, A. M., Elrehany, M. A., Mohamed, K. M., & Kamel, M. S. (2020). Isolation and characterization of novel acetylcholinesterase inhibitors from Ficus benghalensis L. leaves. RSC Advances, 10(60), 36920-36929. https://doi.org/10.1039/d0ra06565

Huang, L. K., Chao, S. P., & Hu, C. J. (2020). Clinical trials of new drugs for Alzheimer disease. Journal of Biomedical Science, 27, Article 18. https://doi.org/10.1186/s12929-019-0609-7

Inestrosa, N. C., Dinamarca, M. C. & Alvarez, A. (2008). Amyloid–cholinesterase interactions Implications for Alzheimer’s disease. FEBS Journal, 275, 625-632.

Inthachub, P., Vajrodaya, S., & Duyfjes, B. E. E. (2009). Review of the genus Stichoneuron (Stemonaceae). Edinburgh Journal of Botany, 66(2), 213-228.

Islam, M. A., Zaman, S., Biswas, K., Al-Amin, M. Y., Hasan, M. K., Alam, A. H. M. K., Tanaka, T., & Sadik, G. (2021). Evaluation of cholinesterase inhibitory and antioxidant activity of Wedelia chinensis and isolation of apigenin as an active compound. BMC Complementary Medicine and Therapies, 21, Article 204. https://doi.org/10.1186/s12906-021-03373-4

Kinney, J. W., Bemillerb, S. M., Murtishawa, A. S., Leisganga, A. M., Salazara, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 4(1), 575-590. https://doi.org/10.1016/j.trci.2018.06.014

Kirkley, K. S., Popichak, K. A., Afzali, M. F., Legare, M. E. & Tjalkens, R. B. (2017). Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. Journal of Neuroinflammation, 14, Article 99. https://doi.org/10.1186/s12974-017-0871-0

Konrath, E. L., Passos, C. dos S., Klein-Júnior, L. C., & Henriques, A. T. (2013). Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. Journal of Pharmacy and Pharmacology, 65(12), 1701-1725.

Lai, D.-H., Yang, Z.-D., Xue, W.-W., Sheng, J., Shi, Y., & Yao, X.-J. (2013). Isolation, characterization and acetylcholinesterase inhibitory activity of alkaloids from roots of Stemona sessilifolia. Fitoterapia, 89(1), 257-264.

Lee, C. H., Lee, T. H., Ong, P. Y., Wong, S. L., Hamdan, N., Elgharbawy, A. A.M., & Azmi, N. A. (2021). Integrated ultrasound-mechanical stirrer technique for extraction of total alkaloid content from Annona muricata. Process Biochemistry, 109, 104-116.

Li, Y., Zhang, X. X., Jiang, L. J., Yuan, L., Cao, T. T., Li, X., Dong, L., Li, Y. & Yin, S. F. (2015). Inhibition of acetylcholinesterase (AChE): A potential therapeutic target to treat Alzheimer's disease. Chemical Biology and Drug Design, 86(4), 776-782.

Majumdar, K., & Datta, B. K. (2013). Fruit and seed discoveries in Stichoneuron membranaceum Hook. f. (Stemonaceae): an endemic to Indo-Myanmar. Modern Phytomorphology, 3, 39-44.

Martins, M. M., Branco, P. S., & Ferreira, L. M. (2023). Enhancing the therapeutic effect in Alzheimer’s disease drugs: The role of polypharmacology and cholinesterase inhibitors. Chemistry Select, 8(10), Article 202300461. https://doi.org/10.1002/slct.202300461

Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology, 190, Article 108352. https://doi.org/10.1016/j.neuropharm.2020.108352

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4

Murraya, A. P., Faraonia, M. B., Castroa, M. J., Alzaa, N. P., & Cavallaro, V. (2013). Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Current Neuropharmacology, 11(4), 388-413.

Novoa, C., Salazar, P., Cisternas, P., Gherardelli, C., Vera-Salazar, R., Zolezzi, J. M., & Inestrosa, N. C. (2022). Inflammation context in Alzheimer’s disease, a relationship intricate to define. Biological Research, 55(1), Article 39. https://doi.org/10.1186/s40659-022-00404-3

Pascoal, T. A., Benedet, A. L., Ashton, N. J., Kang, M. S., Therriault, J., Chamoun, M., Savard, M., Lussier, F.Z., Tissot, C., Karikari, T.K., Ottoy, J., Mathotaarachchi, S., Stevenson, J., Massarweh, G.; Schöll, M., de Leon, M.J., Soucy, J. P., Edison, P., Blennow, K., Zetterberg, H., Gauthier, S., & Rosa-Neto, P. (2021). Microglial activation and tau propagate jointly across Braak stages. Nature Medicine, 27(9), 1592-1599.

Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M.; Das, R., Emran, T. B., & Uddin, M. S. (2022). Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 27(1), Article 233. https://doi.org/10.3390/molecules27010233

Rakarcha, S., Pongamornkul, W., Thammarong, W., Maknoi, C., & Souvannakhoummane, K. (2020). Stemona fimbritepala (Stemonaceae), a new species from northern Laos. Thai Forest Bulletin Botany, 48(2), 206-211.

Ramli, R. A., Lie, W., & Pyne, S. G. (2013). Alkaloids from the roots and leaves of Stichoneuron halabalensis and their acetylcholinesterase inhibitory activities. Natural Product Communications, 8(6), 695-698.

Rosas-Ballina, M. & Tracey, K. J. (2009). Cholinergic control of inflammation. Journal of Internal Medicine, 265(6), 663-679.

Saini, R., & Saxena, A. K. (2018). The structural hybrids of acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease: A review. Journal of Alzheimers and Neurodegenerative Diseases, 4(1), Article 100015. https://doi.org/10.24966/AND-9608/100015

Santos, T. C. D., Gomes, T. M., Pinto, B. A. S., Camara, A. L., & Paes, A. M. D. A. (2018). Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Frontiers in Pharmacology, 9(1), Article 1192. https://doi.org/10.3389/fphar.2018.01192

Sehar, U., Rawat, P., Reddy, A. P., Kopel, J., & Reddy, P. H. (2022). Amyloid beta in aging and Alzheimer’s disease. International Journal of Molecular Sciences, 23(21), Article 12924. https://doi.org/10.3390/ijms232112924

Shahidi, F., & Yeo, J. (2018). Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International Journal of Molecular Sciences, 19(6), Article 1573. https://doi.org/10.3390/ijms19061573

Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics (review). Molecular Medicine Reports, 20(2), 1479-1487.

Sie, Y.-Y., Chen, L.-C., Li, C.-J, Yuan, Y.-H., Hsiao, S.-H., Lee, M.-H., Wang, C.-C. & Hou, W.-C. (2023). Inhibition of acetylcholinesterase and amyloid-β aggregation by piceatannol and analogs: Assessing in vitro and in vivo impact on a murine model of scopolamine-induced memory impairment. Antioxidants, 12(7), Article 1362. https://doi.org/10.3390/antiox12071362

Singh, K. D., Koijam, A. S., Bharali, R. & Rajashekar, Y. (2023). Insecticidal and biochemical effects of Dillenia indica L. leaves against three major stored grain insect pests. Frontiers in Plant Science, 14, Article 1135946. https://doi.org/10.3389/fpls.2023.1135946

Sinyora, B., Mineoa, J. & Ochnera, C. (2020). Alzheimer’s disease, inflammation, and the role of antioxidants. Journal of Alzheimer’s Disease Reports, 4, 175-183.

Suciati, S., Inayah, D. N., Widyawaruyanti, A., & Rudiyansyah, R. (2022). Antioxidant and acetylcholinesterase inhibitor potentials of the stem extract of Pternandra galeata. Journal Vitae, 29(3), Article 349983. https://doi.org/10.17533/udea.vitae.v29n3a349983

Sundaramoorthy, P. M. K., & Packiam, K. K. (2020). In vitro enzyme inhibitory and cytotoxic studies with Evolvulus alsinoides (Linn.) Linn. Leaf extract: a plant from Ayurveda recognized as Dasapushpam for the management of Alzheimer’s disease and diabetes mellitus. BMC Complementary Medicine and Therapies, 20(1), Article 129. https://doi.org/10.1186/s12906-020-02922-7

Tamfu, A. N., Kucukaydin, S., Yeskaliyeva, B., Ozturk, M., & Dinica, R. M. (2021). Non-alkaloid cholinesterase inhibitory compounds from natural sources. Molecules, 26(18), 5582. https://doi.org/10.3390/molecules26185582

Tewtrakul, S., Subhadhirasakul, S., Karalai, C., Ponglimanont, C., & Cheenpracha, S. (2009). Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurate. Food Chemistry, 115(2), 534-538.

Twarowski, B. & Herbet, M. (2023). Inflammatory processes in Alzheimer’s disease pathomechanism, diagnosis and treatment: A review. International Journal of Molecular Sciences, 24(7), Article 6518. https://doi.org/10.3390/ijms24076518

Xu, Y., Xiong, L., Yan, Y.; Sun, D., Duan, Y., Li, H., & Chen, L. (2022). Alkaloids from Stemona tuberosa and their Anti-Inflammatory Activity. Frontiers in Chemistry, 10, Article 847595. https://doi.org/10.3389/fchem.2022.847595

Yahia, I. B. H., Zaouali, Y., Ciavatta, M. L., Ligresti, A., Jaouadi, R., Boussaid, M., & Cutignano, A. (2019). Polyphenolic profiling, quantitative assessment and biological activities of Tunisian native Mentha rotundifolia (L.) Huds. Molecules, 24(13), Article 2351. https://doi.org/10.3390/molecules24132351