Physicochemical, Nutritional, and Functional Properties of Rice Bran from White and Brown Rice in Sri Lanka: A Study of Bg 300 and At 362
Main Article Content
Abstract
Rice bran (RB), a by-product of rice milling, is increasingly recognized for its versatile applications across various industries. This study analyzes and compares the physicochemical, nutritional and functional properties of RB from two high-yielding and highly consumed Sri Lankan rice varieties: Bg 300, a white rice bran and At 362, a brown rice bran. Bg 300 exhibited higher bulk density (0.40±0.01 mg/mL), oil absorption capacity (192.33±9.82%), water holding capacity (2.91±0.03 g/g), foaming capacity (13.95±2.12%), and foaming stability (64.8±13.1%). In contrast, At 362 demonstrated superior water absorption (261.1±15.9%), swelling power (3.8±0.08 g/g), and water solubility index (3.7±0.05 g/g). Nutritionally, Bg 300 contained higher fat (20.43±0.32 g/100 g), protein (11.09±0.22 g/100 g), and fiber (5.6±0.19%) contents, and potassium (0.54±1.0 g/100g) and sodium (0.007±2.12 g/100g) contents. In contrast, At 362 had significantly higher total flavonoid content (5.52±0.08 mg quercetin equivalent /g), total phenolic content (3.13±0.02 mg gallic acid equivalent/100 g), and antioxidant capacity (27.12±0.80 mmol Trolox/g). Thus, Bg 300 excelled in physical and nutritional properties, while At 362 was superior in antioxidant activity and bioactive compounds. As a whole, both Bg 300 and At 362 rice brans were rich in physicochemical, nutritional and functional properties, making them promising potential ingredients in functional foods.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abebe, W., Collar, C., & Ronda, F. (2015). Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours. Carbohydrate Polymers, 115, 260-268. https://doi.org/10.1016/j.carbpol.2014.08.080
Abubakar, T., Marikkar, N., Salleh, A., Azlan, A., & Jivan, M. (2017). Evaluation of brans of different rice varieties for their antioxidative and antihyperglycemic potentials. Journal of Food Biochemistry, 41(2), Article e12295. https://doi.org/10.1111/jfbc.12295
Afonso, T., Moresco, R., Uarrota, V. G., Navarro, B. B., Nunes, E. da C., Maraschin, M., & Rocha, M. (2017). UV-Vis and CIELAB based chemometric characterization of Manihot esculenta carotenoid contents. Journal of Integrative Bioinformatics, 14(4), 1-13. https://doi.org/10.1515/jib-2017-0056
AACC. (2000). Solvent retention capacity profile (11th ed.). American Association of Cereal Chemists.
Antunes, L. L., Back, A. L., Kossar, M. L. B. C., Spessato, A. G., Colla, E., & Drunkler, D. A. (2023). Prebiotic potential of carbohydrates from defatted rice bran – Effect of physical extraction methods. Food Chemistry, 404, Article 134539. https://doi.org/10.1016/j.foodchem.2022.134539
AOAC. (2019). Offical methods of analysis of AOAC internatioanl (21st ed.). AOAC International.
Apinunjarupong, S., Lapnirun, S., & Theerakulkait, C. (2009). Preparation and some functional properties of rice bran protein concentrate at different degree of hydrolysis using bromelain and alkaline extraction. Preparative Biochemistry and Biotechnology, 39(2), 183-193. https://doi.org/10.1080/10826060902800858
Arab, F., Alemzadeh, I., & Maghsoudi, V. (2011). Determination of antioxidant component and activity of rice bran extract. Scientia Iranica, 18(6), 1402-1406. https://doi.org/10.1016/j.scient.2011.09.014
Bhosale, S., & Vijayalakshmi, D. (2015). Processing and nutritional composition of rice bran. Current Research in Nutrition and Food Science, 3(1), 74-80. https://doi.org/10.12944/CRNFSJ.3.1.08
Cao, Y., Zhao, J., Tian, Y., Jin, Z., Xu, X., Zhou, X., & Wang, J. (2021). Physicochemical properties of rice bran after ball milling. Journal of Food Processing and Preservation, 45(10), Article e15785. https://doi.org/10.1111/jfpp.15785
Cappelli, A., Oliva, N., & Cini, E. (2020). A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Applied Sciences, 10(18), Article 6559. https://doi.org/10.3390/APP10186559
Chandi, G. K., & Sogi, D. S. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592-597. https://doi.org/10.1016/j.jfoodeng.2006.02.018
Chen, T., Xie, L., Wang, G., Jiao, J., Zhao, J., Yu, Q., Chen, Y., Shen, M., Wen, H., Ou, X., & Xie, J. (2024). Anthocyanins-natural pigment of colored rice bran: Composition and biological activities. Food Research International, 175, Article 113722. https://doi.org/10.1016/j.foodres.2023.113722
Cho, S.-J., Lee, S.-D., & Han, S.-W. (2022). Functional properties of rice bran proteins extracted from low-heat-treated defatted rice bran. Molecules, 27(21), Article 7212. https://doi.org/10.3390/molecules27217212
Cicero, A. F. G., Fogacci, F., & Colletti, A. (2017). Food and plant bioactives for reducing cardiometabolic disease risk: An evidence based approach. Food and Function, 8(6), 2076-2088. https://doi.org/10.1039/c7fo00178a
Department of Agriculture Sri Lanka. (2024, Novermber 1). Recommended rice varities. https://doa.gov.lk/rrdi_rice_varities/
Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: Factors affecting their stability and degradation. Antioxidants, 10(12), Article 1967. https://doi.org/10.3390/antiox10121967
Forsström, J., Andreasson, B., & Wågberg, L. (2005). Influence of pore structure and water retaining ability of fibres on the strength of papers from unbleached kraft fibres. Nordic Pulp and Paper Research Journal, 20(2), 176-185. https://doi.org/10.3183/npprj-2005-20-02-p176-185
Ghasemzadeh, A., Baghdadi, A., Jaafar, H. Z. E., Swamy, M. K., & Wahab, P. E. M. (2018a). Optimization of flavonoid extraction from red and brown rice bran and evaluation of the antioxidant properties. Molecules, 23(8), Article 1863. https://doi.org/10.3390/molecules23081863
Ghasemzadeh, A., Karbalaii, M. T., Jaafar, H. Z. E., & Rahmat, A. (2018b). Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chemistry Central Journal, 12(1), Article 17. https://doi.org/10.1186/s13065-018-0382-9
Giesel, M., Hansen, T., & Gegenfurtner, K. R. (2009). The discrimination of chromatic textures. Journal of Vision, 9(9), Article 11. https://doi.org/10.1167/9.9.11
Goodman, T. M. (2012). International standards for colour. In J. Best. (Ed.). Colour design (2nd ed., pp. 417-452). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101270-3.00018-7
Gul, K., Yousuf, B., Singh, A. K., Singh, P., & Wani, A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food - A review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24-30. https://doi.org/10.1016/j.bcdf.2015.06.002
Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), Article 2248. https://doi.org/10.3390/pr11082248
Iqbal, S., Bhanger, M. I., & Anwar, F. (2005). Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chemistry, 93(2), 265-272. https://doi.org/10.1016/j.foodchem.2004.09.024
Irakli, M., Lazaridou, A., & Biliaderis, C. G. (2021). Comparative evaluation of the nutritional, antinutritional, functional, and bioactivity attributes of rice bran stabilized by different heat treatments. Foods, 10(1), Article 57. https://doi.org/10.3390/foods10010057
Khan, S. H., Butt, M. S., Sharif, M. K., Sameen, A., Mumtaz, S., & Sultan, M. T. (2011). Functional properties of protein isolates extracted from stabilized rice bran by microwave, dry heat, and parboiling. Journal of Agricultural and Food Chemistry, 59(6), 2416-2420. https://doi.org/10.1021/jf104177x
Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61(1), 1-21. https://doi.org/10.1080/16546628.2017.1361779
Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 59(1), 1-6. https://doi.org/10.1007/s11103-005-2159-5
Kodape, A., Kodape, A., & Desai, R. (2025). Rice bran: Nutritional value, health benefits, and global implications for aflatoxin mitigation, cancer, diabetes, and diarrhea prevention. Food Chemistry, 464(Part 2), Article 141749. https://doi.org/10.1016/j.foodchem.2024.141749
Lai, P., Li, K. Y., Lu, S., & Chen, H. H. (2009). Phytochemicals and antioxidant properties of solvent extracts from Japonica rice bran. Food Chemistry, 117(3), 538-544. https://doi.org/10.1016/j.foodchem.2009.04.031
Lavanya, M. N., Venkatachalapathy, N., & Manickavasagan, A. (2017). Physicochemical characteristics of rice bran. In A. Manickavasagan, C. Santhakumar, & N. Venkatachalapathy (Eds.). Brown rice (pp. 79-90). Springer Cham. https://doi.org/10.1007/978-3-319-59011-0
Liu, Y., Zhang, H., Yi, C., Quan, K., & Lin, B. (2021). Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chemistry, 342, Article 128352. https://doi.org/10.1016/j.foodchem.2020.128352
Lv, S.-W., Sun, L.-H., Zhao, S.-Y., & Bao, Y.-M. (2017). Effect of dry heat stabilisation on the functional properties of rice bran proteins. International Journal of Food Science and Technology, 52(8), 1836-1843. https://doi.org/10.1111/ijfs.13458
Macdougall, D. B. (2010). 13 - Colour measurement of food: principles and practice. In M. L. Gulrajani (Ed.), Colour measurement. Principles, advances and industrial applications (pp. 312-342). Woodhead Publishing. https://doi.org/10.1533/9780857090195.2.312
Maclean, W., Harnly, J., Chen, J., Chevassus-Agnes, S., Gilani, G. S., Livesey, G., Munoz De Chavez, M., Mathioudakis, B., Devasconcellos, M., & Warwick, P. (2003). Food energy - methods of analysis and conversion factors. In Food and Agriculture Organization of the United Nations Technical Workshop Report. Food and Agriculture Organization of the United Nations.
Mcarthur, E., Britten, M., Lavoie, L., Mcarthur, E., Britten, M., & Lavoie, L. (1989). Foaming properties of protein as affected by concentration. Food Science, 57(5), 1219-1241. https://doi.org/10.1111/j.1365-2621.1992.tb11303.x
Meléndez-Martínez, A. J., Mandić, A. I., Bantis, F., Böhm, V., Borge, G. I. A., Brnčić, M., Bysted, A., Cano, M. P., Dias, M. G., Elgersma, A., Fikselová, M., García-Alonso, J., Giuffrida, D., Gonçalves, V. S. S., Hornero-Méndez, D., Kljak, K., Lavelli, V., Manganaris, G. A., Mapelli-Brahm, P., … O’Brien, N. (2022). A comprehensive review on carotenoids in foods and feeds: status quo, applications, patents, and research needs. Critical Reviews in Food Science and Nutrition, 62(8), 1999-2049. https://doi.org/10.1080/10408398.2020.1867959
Merecz-Sadowska, A., Sitarek, P., Kowalczyk, T., Zajdel, K., Jęcek, M., Nowak, P., & Zajdel, R. (2023). Food anthocyanins: Malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits. Nutrients, 15(13), Article 3016. https://doi.org/10.3390/nu15133016
Min, B., McClung, A. M., & Chen, M.-H. (2011). Phytochemicals and antioxidant capacities in rice brans of different color. Journal of Food Science, 76(1), 117-126. https://doi.org/10.1111/j.1750-3841.2010.01929.x
Ministry of Agriculture, Livestock, Lands and Irrigation (2023, December 29). At 362, Bg 300 and Bg 352 paddy varieties introduced by Ambalantota and Bathalagoda Paddy Research Institutes were able to produce high yields in several districts. https://www.agrimin.gov.lk/web/index.php/news-and-events/2125-22-05-2023-2e? lang=en
Nielsen, S. S. (2017). Food analysis. (5th ed.). Springer Cham. https://doi.org/10.1007/978-3-319-45776-5
Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., & Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240, 212-221. https://doi.org/10.1016/j.foodchem.2017.07.095
Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9
Pitija, K., Nakornriab, M., Sriseadka, T., Vanavichit, A., & Wongpornchai, S. (2013). Anthocyanin content and antioxidant capacity in bran extracts of some Thai black rice varieties. International Journal of Food Science and Technology, 48(2), 300-308. https://doi.org/10.1111/j.1365-2621.2012.03187.x
Prakash, J., & Ramanatham, G. (1995). Effect of stabilisation treatment of rice bran on nutritional quality of protein concentrates. International Journal of Food Sciences and Nutrition, 46(2), 177-184. https://doi.org/10.3109/09637489509012547
Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. https://doi.org/10.1007/s00217-004-0889-2
Rosniyana, A., Hashifah, M. A., & Norin, S. A. S. (2007). The physico-chemical properties and nutritional composition of rice bran produced at different milling degrees of rice (Ciri fiziko-kimia dan kandungan nutrien bagi dedak beras yang dihasilkan daripada pengilangan berbeza). Journal of Tropical Agriculture and Food Science, 35(1), 99-105.
Saji, N., Francis, N., Schwarz, L. J., Blanchard, C. L., & Santhakumar, A. B. (2019). Rice bran derived bioactive compounds modulate risk factors of cardiovascular disease and type 2 diabetes mellitus: An updated review. Nutrients, 11(11), Article 2736. https://doi.org/10.3390/nu11112736
Sapwarobol, S., Saphyakhajorn, W., & Astina, J. (2021). Biological functions and activities of rice bran as a functional ingredient: A review. Nutrition and Metabolic Insights, 14, 1-11. https://doi.org/10.1177/11786388211058559
Schopf, M., & Scherf, K. A. (2021). Water absorption capacity determines the functionality of vital gluten related to specific bread volume. Foods, 10(2), Article 228. https://doi.org/10.3390/foods10020228
Shahbandeh, M. (2023). Total global rice consumption 2008/09-2022/23. Statistica. https://www.statista.com/statistics/255977/total-global-rice-consumption/
Sharma, R., Srivastava, T., & Saxena, D. C. (2015). Studies on rice bran and its benefits-A review. International Journal of Engineering Research and Applications, 5(5), 107-112.
Siswantoro, J. (2019). Application of color and size measurement in food products inspection. Indonesian Journal of Information Systems, 1(2), 90-107. https://doi.org/10.24002/ijis.v1i2.1923
Tan, B. L., Norhaizan, M. E., & Chan, L. C. (2023). Rice bran: From waste to nutritious food ingredients. Nutrients, 15(11), Article 2503. https://doi.org/10.3390/nu15112503
Tena, N., Martín, J., & Asuero, A. G. (2020). State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants, 9(5), Article 451. https://doi.org/10.3390/antiox9050451
Thanonkaew, A., Wongyai, S., McClements, D. J., & Decker, E. A. (2012). Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza saltiva L.). LWT-Food Science and Technology, 48(2), 231-236. https://doi.org/10.1016/j.lwt.2012.03.018
Thennakoon, T. P. A. U., & Ekanayake, S. (2022). Sri Lankan traditional parboiled rice: A panacea for hyperglycaemia? PLoS ONE, 17(9), Article e0273386. https://doi.org/10.1371/journal.pone.0273386
Tsegay, N., Admassu, H., Zegale, B., & Gosu, A. (2024). Nutritional and functional potentials of wheat, cowpea, and yam composite flours on bread formulations: Effect of blending ratio and baking parameters. Journal of Agriculture and Food Research, 18, Article 101294. https://doi.org/10.1016/j.jafr.2024.101294
Tuncel, N. B., Yilmaz, N., Kocabıyık, H., & Uygur, A. (2014). The effect of infrared stabilized rice bran substitution on B vitamins , minerals and phytic acid content of pan breads : Part II. Journal of Cereal Science, 59, 162-166. https://doi.org/10.1016/j.jcs.2013.12.005
Wanyo, P., Kaewseejan, N., Meeso, N., & Siriamornpun, S. (2016). Bioactive compounds and antioxidant properties of different solvent extracts derived from Thai rice by-products. Applied Biological Chemistry, 59(3), 373-384. https://doi.org/10.1007/s13765-016-0173-8
Wisetkomolmat, J., Arjin, C., Satsook, A., Seel-audom, M., Ruksiriwanich, W., Prom-u-Thai, C., & Sringarm, K. (2022). Comparative analysis of nutritional components and phytochemical attributes of selected thai rice. Frontiers in Nutrition, 9, Article 833730. https://doi.org/10.3389/fnut.2022.833730
Yadav, K. C., Mitchell, J., Bhandari, B., & Prakash, S. (2024). Unlocking the potential of rice bran through extrusion: a systematic review. Sustainable Food Technology, 2(3), 594-614. https://doi.org/10.1039/d4fb00027g
Zaky, A. A., Chen, Z., Qin, M., Wang, M., & Jia, Y. (2020). Assessment of antioxidant activity, amino acids, phenolic acids and functional attributes in defatted rice bran and rice bran protein concentrate. Progress in Nutrition, 22(4), Article e2020069. https://doi.org/10.23751/pn.v22i4.8971
Zhang, M. W., Zhang, R. F., Zhang, F. X., & Liu, R. H. (2010). Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. Journal of Agricultural and Food Chemistry, 58(13), 7580-7587. https://doi.org/10.1021/jf1007665