Effects of Incorporation of Aloe vera Leaf Extract on the Synthesis and Characteristics of Bacterial Cellulose Produced by Komagataeibacter xylinus

Main Article Content

Nuratiqah Ismail
Nur Fajrina Roslan
Vishnupriya A/P Murugam
Nurqamarina Abang Nasyhin
Nurul Nadhirah Ruzelan
Wan Syahiidah Wan Abdul Aziz
Aziz Ahmad
Azila Adnan

Abstract

Bacterial cellulose (BC) is a non-toxic, high-purity, and biocompatible polymer that is abundant in various bacteria and does not contain lignin, hemicellulose and pectin found in plant cellulose. High concentrations of carbon sources can limit yields of BC. One potential solution to enhance BC production is the use of elicitors like plant extracts; however, the use of plant extracts such as Aloe vera leaf extract remains limited. Therefore, the current study aimed to investigate the effects of Aloe vera leaves on BC properties, glucose consumption, and synthesis rate by Komagataeibacter xylinus to increase BC volumetric production. Aloe vera extract was incorporated into the culture medium (given the conditions used), and BC was analyzed after 5 to 7 days of fermentation. The fermentation process at 30°C showed that increasing Aloe vera extract volume to 30% (v/v) improved glucose consumption, resulting in 3.35 g/L of BC accumulated in culture flasks. Adding different amounts of Aloe vera leaf extracts to the bacteria culture altered the morphology of the BC film and trapped Aloe vera extract inside the BC fibers. The treatment with 30% (v/v) Aloe vera leaf extract also resulted in a less homogeneous Aloe-BC morphological surface structure. The X-ray diffractometer (XRD) crystallinity index of control BC improved from 83.70% to 93.70% compared to the 30% Aloe-BC. According to the IR spectral analysis, the presence of amine groups in dried BC samples is confirmed by the detected absorption in the 1536-1635 cm⁻¹ range, which indicates N–H bending vibrations. In conclusion, including Aloe vera leaf increased glucose intake, enhanced BC biomass, and altered the shape of the BC.

Article Details

How to Cite
Nuratiqah Ismail, Nur Fajrina Roslan, Vishnupriya A/P Murugam, Nurqamarina Abang Nasyhin, Nurul Nadhirah Ruzelan, Wan Syahiidah Wan Abdul Aziz, Aziz Ahmad, & Azila Adnan. (2025). Effects of Incorporation of Aloe vera Leaf Extract on the Synthesis and Characteristics of Bacterial Cellulose Produced by Komagataeibacter xylinus. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0264490. https://doi.org/10.55003/cast.2025.264490
Section
Original Research Articles

References

Andritsou, V., De Melo, E. M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A., & Matharu, A. S. (2018). Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega, 3(8), 10365-10373. https://doi.org/10.1021/acsomega.8b01315

Añibarro-Ortega, M., Pinela, J., Ćirić, A., Lopes, E., Molina, A. K., Calhelha, R. C., Soković, M., Ferreira, O., Ferreira, I. C. F. R., & Barros, L. (2021). Extraction of Aloesin from Aloe vera rind using alternative green solvents: Process optimization and biological activity assessment. Biology, 10(10), Article 951. https://doi.org/10.3390/biology10100951

Anguluri, K., La China, S., Brugnoli, M., Cassanelli, S., & Gullo, M. (2022). Better under stress: Improving bacterial cellulose production by Komagataeibacter xylinus K2G30 (UMCC 2756) using adaptive laboratory evolution. Frontiers in Microbiology, 13, Article 994097. https://doi.org/10.3389/fmicb.2022.994097

Atykyan, N., Revin, V., & Shutova, V. (2020). Raman and FT-IR spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. Amb Express, 10(1), Article 84. https://doi.org/10.1186/s13568-020-01020-8

Bang, W. Y., Kim, D. H., Kang, M. D., Yang, J., Huh, T., Lim, Y. W., & Jung, Y. H. (2021). Addition of various cellulosic components to bacterial nanocellulose: A comparison of surface qualities and crystalline properties. Journal of Microbiology and Biotechnology, 31(10), 1366-1372. https://doi.org/10.4014/jmb.2106.06068

Barshan, S., Bari, M. R., Almasi, H., & Amiri, S. (2019). Optimization and characterization of bacterial cellulose produced by Komagataeibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. International Journal of Biological Macromolecules, 136, 1188-1195. https://doi.org/10.1016/j.ijbiomac.2019.06.192

Bodea, I. M., Beteg, F., Pop, C., David, A., Dudescu, C., Vilău, C., Stǎnilǎ, A., Rotar, A. M., & Cătunescu, G. M. (2021). Optimization of moist and oven-dried bacterial cellulose production for functional properties. Polymers, 13(13), Article 2088. https://doi.org/10.3390/polym13132088

Chaiyasat, A., Jearanai, S., Moonmangmee, S., Moonmangmee, D., Christopher, L. P., & Alam, N. (2018). Novel green hydrogel material using bacterial cellulose. Oriental Journal of Chemistry, 34(4), 1735-1740. https://doi.org/10.13005/ojc/340404

Chen, G., Wu, G., Chen, L., Wang, W., Hong, F., & Jönsson, L. J. (2019). Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass. Microbial Biotechnology, 12(4), 677-687. https://doi.org/10.1111/1751-7915.13401

Cuvas-Limón, R. B., Ferreira-Santos, P., Cruz, M., Teixeira, J. A., Belmares, R., & Nobre, C. (2022). Novel bio-functional Aloe vera beverages fermented by probiotic Enterococcus faecium and Lactobacillus lactis. Molecules, 27(8), Article 2473. https://doi.org/10.3390/molecules27082473

Dai, L., Nan, J., Tu, X., He, L., Wei, B., Xu, C., Xu, Y., Li, S., Wang, H., & Zhang, J. (2019). Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis. Cellulose, 26(11), 6713-6724. https://doi.org/10.1007/s10570-019-02530-w

Fuller, M. E., Andaya, C., & McClay, K. (2018). Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. Journal of Microbiological Methods, 144, 145-151. https://doi.org/10.1016/j.mimet.2017.10.017

Ghozali, M., Meliana, Y., & Chalid, M. (2021). Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today: Proceedings, 44, 2131-2134. https://doi.org/10.1016/j.matpr.2020.12.274

Godinho, J., Berti, F., Müller, D., Rambo, C., & Porto, L. (2016). Incorporation of Aloe vera extracts into nanocellulose during biosynthesis. Cellulose, 23, 545-555. https://doi.org/10.1007/s10570-015-0844-3

González-García, Y., Meza-Contreras, J. C., Gutiérrez-Ortega, J. A., & Manríquez-González, R. (2022). In vivo modification of microporous structure in bacterial cellulose by exposing Komagataeibacter xylinus culture to physical and chemical stimuli. Polymers, 14(20), Article 4388. https://doi.org/10.3390/polym14204388

Gorgieva, S., & Trček, J. (2019). Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 9(10), Article 1352. https://doi.org/10.3390/nano9101352

Hai, Z., Ren, Y., Hu, J., Wang, H., Qin, Q., & Chen, T. (2019). Evaluation of the treatment effect of Aloe vera fermentation in burn injury healing using a rat model. Mediators of Inflammation, 2019(1), Article 2020858. https://doi.org/10.1155/2019/2020858

Hashim, N. A. R. N. A., Zakaria, J., Mohamad, S., Mohamad, S. F. S., & Rahim, M. H. A. (2021). Effect of different treatment methods on the purification of bacterial cellulose produced from OPF juice by Acetobacter xylinum. IOP Conference Series: Materials Science and Engineering, 1092(1), Article 012058. https://doi.org/10.1088/1757-899x/1092/1/012058

Hęś, M., Dziedzic, K., Górecka, D., Jędrusek‐Golińska, A., & Gujska, E. (2019). Aloe vera (L.) Webb.: Natural sources of antioxidants – A review. Plant Foods for Human Nutrition, 74(3), 255-265. https://doi.org/10.1007/s11130-019-00747-5

Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. The Biochemical Journal, 58(2), 345-352. https://doi.org/10.1042/BJ0580345

Irham, W. H., Tamrin, Marpaung, L., & Marpongahtun. (2020). Characterization of bacterial cellulose from coconut water supplemented Curcuma Longa Linn and Ziziphus Mauritiana extract. AIP Conference Proceedings, 2267, Article 020056. https://doi.org/10.1063/5.0023953

Khanal, M., Lamichhane, S., Bhattarai, A., Kayastha, B. L., & Labh, S. N. (2021). Extract of Aloe vera (Aloe barbadensis Miller) enhances the growth, protein contents, and gastrosomatic index (GaSI) of common carp Cyprinus carpio. Journal of Nutrition and Metabolism, 2021(1), Article 8029413. https://doi.org/10.1155/2021/8029413

Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Edinur, H. A., Kari, Z. A., Noor, N. H. M., & Ray, R. R. (2021). Bacterial cellulose: production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 22(23), Article 12984. https://doi.org/10.3390/ijms222312984

Lupașcu, R. E., Ghica, M. V., Dinu-Pîrvu, C., Popa, L., Velescu, B. Ș., & Arsene, A. L. (2022). An overview regarding microbial aspects of production and applications of bacterial cellulose. Materials, 15(2), Article 676. https://doi.org/10.3390/ma15020676

Molina-Ramírez, C., Castro, M., Osorio, M., Torres-Taborda, M., Gómez, B., Zuluaga, R., Gómez, C., Gañán, P., Rojas, O., & Castro, C. (2017). Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials, 10(6), Article 639. https://doi.org/10.3390/ma10060639

Naomi, R., Idrus, R. B. H., & Fauzi, M. B. (2020). Plant- vs. bacterial-derived cellulose for wound healing: A review. International Journal of Environmental Research and Public Health, 17(18), Article 6803. https://doi.org/10.3390/ijerph17186803

Pigaleva, M. A., Bulat, M. V., Gromovykh, T. I., Gavryushina, I. A., Lutsenko, S. V., Gallyamov, M. O., & Kiselyova, O. I. (2019). A new approach to purification of bacterial cellulose membranes: What happens to bacteria in supercritical media? The Journal of Supercritical Fluids, 147, 59-69. https://doi.org/10.1016/j.supflu.2019.02.009

Rahman, S., Carter, P., & Bhattarai, N. (2017). Aloe vera for tissue engineering applications. Journal of Functional Biomaterials, 8(1), Article 6. https://doi.org/10.3390/jfb8010006

Rol, F., Belgacem, M. N., Gandini, A., & Bras, J. (2019). Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 88, 241-264. https://doi.org/10.1016/j.progpolymsci.2018.09.002

Saha, J., Mondal, I. H., Ahmed, F., & Rahman, M. (2023). Extraction, characterization and functionality assessment of Aloe vera, chitosan and silk sericin. Arabian Journal of Chemistry, 16(9), Article 105087. https://doi.org/10.1016/j.arabjc.2023.105087

Saibuatong, O. (2011). Effect of addition of aloe vera gel on synthesis of bacterial cellulose film by Acetobacter xylinum. [Master’s thesis, Chulalongkorn University]. Chula Digital Collection. https://digital.car.chula.ac.th/chulaetd/66585/

Sardjono, A. S., Suryanto, H., Aminnudin, & Muhajir, M. (2019). Crystallinity and morphology of the bacterial nanocellulose membrane extracted from pineapple peel waste using high-pressure homogenizer. AIP Conference Proceedings, 2120(1), Article 080015. https://doi.org/10.1063/1.5115753

Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. https://doi.org/10.1016/j.foodhyd.2013.07.012

Sulaeva, I., Hettegger, H., Bergen, A., Röhrer, C., Kostić, M., Konnerth, J., Rosenau, T., & Potthast, A. (2020). Fabrication of bacterial cellulose-based wound dressings with improved performance by impregnation with alginate. Materials Science and Engineering: C, 110, Article 110619. https://doi.org/10.1016/j.msec.2019.110619

Sumardee, N. S. J., Mohd-Hairul, A. R., & Mortan, S. H. (2020). Effect of inoculum size and glucose concentration for bacterial cellulose production by Lactobacillus acidophilus. IOP Conference Series Materials Science and Engineering, 991(1), Article 012054. https://doi.org/10.1088/1757-899x/991/1/012054

Ul‐Islam, M., Ahmad, F., Fatima, A., Shah, N., Yasir, S., Ahmad, W. M., Manan, S., & Ullah, M. W. (2021). Ex situ synthesis and characterization of high strength multipurpose bacterial cellulose-Aloe vera hydrogels. Frontiers in Bioengineering and Biotechnology, 9, Article 601988. https://doi.org/10.3389/fbioe.2021.601988

Yosboonruang, A., Phimnuan, P., Yakaew, S., Oonkhanond, B., Rawangkan, A., Ross, S., Ross, G. M., & Viyoch, J. (2023). Development of biocellulose sheet incorporating Aloe vera gel extract for diabetic wound healing. ACS Omega, 8(19), 16824-16832. https://doi.org/10.1021/acsomega.3c00372