Assessment of Eucalyptus Stem Diameter Estimation Using Terrestrial Laser Scanning

Main Article Content

Laddawan Rianthakool
Jirawat Yingdee
Theerapong Chumsangsri
Detrit Sittibal

Abstract

Stem diameter plays a pivotal role in forest mensuration, encompassing applications in growth assessment, stand density estimation, wood production, and carbon sequestration. Traditionally measured with diameter tape or calipers through ground-based methods, the advent of Terrestrial Laser Scanning (TLS) has introduced a non-destructive 3D modeling technology for precise measurements. In this study, we aimed to assess the accuracy and precision of eucalyptus stem diameter estimation using TLS in comparison to ground-based diameter tape measurement. The results showed an average diameter at breast height (dbh) of 13.840 cm and an average height of 18.5 m for the sample trees. Stem curves from TLS were automatically derived from the 3D Forest program analyses of standing eucalyptus trees. Our analysis reveals that the average Root Mean Square Error (RMSE) for estimated stem diameter using TLS was 4.34 cm for the first ten sections of the tree from the ground. The measurement of stem size in eucalyptus trees using TLS tends to show increased RMSE in the upper sections of the stem. Our research underscores the high accuracy achieved in estimating stem diameters, particularly for the lower portions of the trees, even under light wind conditions.

Article Details

Section
Original Research Articles

References

Åkerblom, M., & Kaitaniemi, P. (2021). Terrestrial laser scanning: A new standard of forest measuring and modelling. Annals of Botany, 128(6), 653-662. https://doi.org/10.1093/aob/mcab111

Bournez, E., Landes, T., Saudreau, M., Kastendeuch, P., & Najjar, G. (2017). From TLS point clouds to 3D models of trees: A comparison of existing algorithms for 3D tree reconstruction. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 113-120. https://doi.org/10.5194/isprs-archives-XLII-2-W3-113-2017

Buck, A. L. B., Lingnau, C., Neto, S. P., Machado, Á. M. L., & Martins-Neto, R. P. (2019). Stem modelling of eucalyptus by terrestrial laser scanning. Floresta e Ambiente, 26(4), Article e20160125. https://doi.org/10.1590/2179-8087.012516

Calders, K. (2015). Terrestrial laser scanning for forest monitoring. [PhD thesis, Wageningen University]. Wageningen University. https://core.ac.uk/download/pdf/29207298.pdf

Cerqueira, C. L., Arce, J. E., Vendruscolo, D. G. S., Dolácio, C., Filho, S., & Tonini, H. (2019). Tape modeling of eucalyptus stem in crop-livestock-forestry integration systems. Floresta, 49(3), 493-502. https://doi.org/10.5380/rf.v49i3.59504

Dassot, M., Constant, T., & Fournier, M. (2011). The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Annals of Forest Science, 68(6), 959-974. https://doi.org/10.1007/s13595-011-0102-2

Eker, R., Ucar, Z., & Aydın, A. (2022). A primary test results of a handheld mobile laser scanner in extraction of tree parameters. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1, 207-212. https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-207-2022

Eto, S., Masuda, H., Hiraoka, Y., Matsushita, M., & Takahashi, M. (2020). Precise calculation of cross sections and volume for tree stem using point clouds. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 205-210). Copernicus GmbH.

Forsman, M. (2018). Tree stem diameter estimation from terrestrial point clouds. [PhD thesis, Swedish University of Agricultural Science]. Swedish University of Agricultural Sciences. https://res.slu.se/id/publ/104216

Hu, M., Pitkänen, T. P., Minunno, F., Tian, X., Lehtonen, A., & Mäkelä, A. (2021). A new method to estimate branch biomass from terrestrial laser scanning data by bridging tree structure models. Annals of Botany, 128(6), 737-751.

Kaur, A., & Monga, R. (2021). Eucalyptus trees plantation: A review on suitability and their beneficial role. International Journal of Bio-resource and Stress Management, 12, 16-25. https://ojs.pphouse.org/index.php/IJBSM/article/view/4064

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., & Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63-77. http://dx.doi.org/10.1016/j.isprsjprs.2016.01.006

Panagiotidis, D., Abdollahnejad, A., & Slavík, M. (2022). 3D point cloud fusion from UAV and TLS to assess temperate managed forest structures. International Journal of Applied Earth Observation and Geoinformation, 112, Article 102917. https://doi.org/10.1016/j.jag.2022.102917

Pitkänen, T. P., Raumonen, P., & Kangas, A. (2019). Measuring stem diameters with TLS in boreal forests by complementary fitting procedure. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 294-306. https://doi.org/10.1016/j.isprsjprs.2018.11.027

Saarinen, N., Kankare, V., Vastaranta, M., Luoma, V., Pyörälä, J., Tanhuanpää, T., Liang, X., Kaartinen, H., Kukko, A., Jaakkola, A., Yu, X., Holopainen, M., & Hyyppä, J. (2017). Feasibility of terrestrial laser scanning for collecting stem volume information from single trees. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 140-158. https://doi.org/10.1016/j.isprsjprs.2016.11.012

Seidel, D., Leuschner, C., Müller, A., & Krause, B. (2011). Crown plasticity in mixed forests—Quantifying asymmetry as a measure of competition using terrestrial laser scanning. Forest Ecology and Management, 261(11), 2123-2132. https://doi.org/10.1016/j.foreco.2011.03.008

Seidel, D., Fleck, S., & Leuschner, C. (2012). Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography. Agricultural and Forest Meteorology, 154-155, 1-8. https://doi.org/10.1016/j.agrformet.2011.10.006

Solares-Canal, A., Alonso, L., Picos, J., & Armesto, J. (2023). Automatic tree detection and attribute characterization using portable terrestrial lidar. Trees, 37, 963-979. https://doi.org/10.1007/s00468-023-02399-0

Trochta, J., Krůček, M., Vrška, T., & Král, K. (2017). 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS ONE, 12(5), Article e0176871. https://doi.org/10.1371/journal.pone.0176871

Vaaja, M. T., Virtanen, J.-P., Kurkela, M., Lehtola, V., Hyyppä, J., & Hyyppä, H. (2016). The effect of wind on tree stem parameter estimation using terrestrial laser scanning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-8, 117-122. https://doi:10.5194/isprsannals-III-8-117-2016

Viana, A. B. T., Torres, C. M. M. E., do Amaral, C. H., Filho, E. I. F., Soares, C. P. B., Santana, F. C., Timo, L. B., & da Rocha, S. J. S. S. (2022). Timber volume estimation by using terrestrial laser scanning: Method in hyperdiverse secondary forests. Revista Árvore, 46, Article 4621. https://doi.org/10.1590/1806-908820220000021

Wan, P., Wang, T., Zhang, W., Liang, X., Skidmore, A. K., & Yan, G. (2019). Quantification of occlusions influencing the tree stem curve retrieving from single-scan terrestrial laser scanning data. Forest Ecosystems, 6, Article 43. https://doi.org/10.1186/s40663-019-0203-1

Yurtseven, H., Coban, S., Akgul, M., & Akay, A. O. (2019). Individual tree measurements in a planted woodland with terrestrial laser scanner. Turkish Journal of Agriculture and Forestry, 43(2), 192-208. https://doi.org/10.3906/tar-1805-5