EMS-Induced Genetic Variation and Morphological Changes in Musa laterita
Main Article Content
Abstract
Musa laterita (orange torch banana) holds ornamental and cultural value, yet its natural breeding potential is limited by sterility and low seed germination. Induced mutation through ethyl methanesulfonate (EMS) is a promising method to generate genetic diversity for plant improvement. This study aimed to evaluate the effects of EMS on M. laterita, focusing on tissue culture propagation, mutation induction, and genetic variation analysis. Tissue-cultured plants were exposed to varying EMS concentrations (100-500 mM) for 1, 6, and 12 h. Survival rates decreased with increasing EMS concentration and exposure time, with no survival at concentrations above 400 mM for prolonged duration. The optimal EMS concentration for mutation was found at 300 mM with 6 h of exposure, yielding significant morphological changes, including an increase in root length (5.99 cm), while pseudostem length showed an upward trend but was not significantly different from the control. Genetic variation was assessed using ISSR markers, with 47.24% polymorphism detected. The greatest genetic distance (51.02%) was observed between control and the treatment at 300 mM for 6 h, confirming the effectiveness of EMS in inducing genetic mutations. These findings demonstrate that EMS can induce useful genetic diversity in M. laterita, thereby offering a valuable resource for future breeding efforts aimed at developing improved ornamental cultivars.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abdel-Motagaly, S. M., Abdellatif, Y. M. R., Manaf, H. H., & Ibrahim, I. S. (2018). Effect of benzyladenine on micropropagation of banana shoots tip. Arab Universities Journal of Agricultural Sciences, 26(Special issue 2D), 2557-2564. https://doi.org/10.21608/ajs.2018.35626
Bornet, B., & Branchard, M. (2001). Nonanchored Inter Simple Sequence Repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Reporter, 19(3), 209-215. https://doi.org/10.1007/BF02772892
Chen, L., Duan, L., Sun, M., Yang, Z., Li, H., Hu, K., Yang, H., & Liu, L. (2023). Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. Frontiers in Plant Science, 13, Article 1052569. https://doi.org/10.3389/fpls.2022.1052569
Chuengpanya, R., Muangkroot, A., Jenjittikul, T., Thammasiri, K., Umpunjun, P., Viboonjun, U., & Chuenboonngarm, N. (2022). In vitro propagation and genetic fidelity assessment of Hedychium longicornutum Griff. Ex Baker, a vulnerable zingiberaceous plant of Thailand. Current Applied Science and Technology, 22(6), 1-21. https://doi.org/10.55003/cast.2022.06.22.012
Costa, R., Pereira, G., Garrido, I., Tavares-de-Sousa, M. M., & Espinosa, F. (2016). Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify orchardgrass (Dactylis glomerata L.) germplasm variations. PloS One, 11(4), Article e0152972. https://doi.org/10.1371/journal.pone.0152972
Garcia-Vallvé, S., Palau, J., & Romeu, A. (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Molecular Biology and Evolution, 16(9), 1125-1134.
Gawel, N. J., & Jarret, R. L. (1991). A modified CTAB DNA extraction procedure for Musa andIpomoea. Plant Molecular Biology Reporter, 9(3), 262-266. https://doi.org/10.1007/BF02672076
Greene, C. N., & Jinks-Robertson, S. (1997). Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Molecular and Cellular Biology, 17(5), 2844-2850. https://doi.org/10.1128/MCB.17.5.2844
Guo, H., Qin, Z., Ren, W., Feng, H., Chen, W., Liu, L., & Sun, Z. (2024). Ethyl methanesulfonate mutant library construction in tartary buckwheat with agronomic trait and flavonoid screening for germplasm innovation. Agronomy, 14(3), Article 547. https://doi.org/10.3390/agronomy14030547
Joshi, P. R., Pandey, S., Maharjan, L., & Pant, B. (2023). Micropropagation and assessment of genetic stability of Dendrobium transparens wall. Ex Lindl. using RAPD and ISSR markers. Frontiers in Conservation Science, 3, Article 1083933. https://doi.org/10.3389/fcosc.2022.1083933
Ke, C., Guan, W., Bu, S., Li, X., Deng, Y., Wei, Z., Wu, W., & Zheng, Y. (2019). Determination of absorption dose in chemical mutagenesis in plants. PloS One, 14(1), Article e0210596. https://doi.org/10.1371/journal.pone.0210596
Lu, Z., Cui, J., Wang, L., Teng, N., Zhang, S., Lam, H.-M., Zhu, Y., Xiao, S., Ke, W., Lin, J., Xu, C., & Jin, B. (2021). Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biology, 22(1), Article 160. https://doi.org/10.1186/s13059-021-02381-4
Manova, V., & Gruszka, D. (2015). DNA damage and repair in plants–from models to crops. Frontiers in Plant Science, 6, Article 885. https://doi.org/10.3389/fpls.2015.00885
Maynard, R. C., & Ruter, J. M. (2023). Mutation breeding of Salvia coccinea with ethyl methanesulfonate. HortScience, 58(5), 568-572. https://doi.org/10.21273/HORTSCI17092-23
Natarajan, N., Sundararajan, S., Ramalingam, S., & Chellakan, P. S. (2020). Efficient and rapid in vitro plantlet regeneration via somatic embryogenesis in ornamental bananas (Musa spp.). Biologia, 75(2), 317-326. https://doi.org/10.2478/s11756-019-00358-0
National Parks. (2024, September 12). Flora & fauna web. https://www.nparks.gov.sg/ florafaunaweb/flora/2/2/2246
Ovejero, S., Soulet, C., & Moriel-Carretero, M. (2021). The alkylating agent methyl methanesulfonate triggers lipid alterations at the inner nuclear membrane that are independent from its DNA-damaging ability. International Journal of Molecular Sciences, 22(14), Article 7461. https://doi.org/10.3390/ijms22147461
Page, R. D. (1996). Tree View: An application to display phylogenetic trees on personal computers. Bioinformatics, 12(4), 357-358.
Penna, S., Shirani Bidabadi, S., & Jain, S. M. (2023). Mutation breeding to promote sustainable agriculture and food security in the era of climate change. In S. Penna & S. M. Jain (Eds.). Mutation Breeding for Sustainable Food Production and Climate Resilience (pp. 1-23). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9720-3_1
Purente, N., Chen, B., Liu, X., Zhou, Y., & He, M. (2020). Effect of ethyl methanesulfonate on induced morphological variation in M3 generation of Chrysanthemum indicum var. aromaticum. HortScience, 55(7), 1099-1104. https://doi.org/10.21273/HORTSCI15068-20
Puripunyavanich, V., Maikaeo, L., Limtiyayothin, M., & Orpong, P. (2022). New frontier of plant breeding using gamma irradiation and biotechnology. In B. Kumar, & A. Debut (Eds.).Green Chemistry-New Perspectives. IntechOpen. https://www.intechopen.com/chapters/81753
Reddy, D. R. D., Suvarna, D., & Rao, D. M. (2014). Effects of 6-benzyl amino purine (6-BAP) on in vitro shoot multiplication of Grand Naine (Musa sp.). International Journal of Advanced Biotechnology and Research, 5(1), 36-42.
Saini, N., Sterling, J. F., Sakofsky, C. J., Giacobone, C. K., Klimczak, L. J., Burkholder, A. B., Malc, E. P., Mieczkowski, P. A., & Gordenin, D. A. (2020). Mutation signatures specific to DNA alkylating agents in yeast and cancers. Nucleic Acids Research, 48(7), 3692-3707.
Sorn, V., Chhon, Y., & Kun, M. (2024). Effects of benzyl adenine and thidiazuron on shoot regeneration of cavendish banana. Current Applıed Scıence and Technology, 24(5), Article e0259302. https://doi.org/10.55003/cast.2024.259302
Talebi, A. B., Talebi, A. B., & Jafarpour, M. (2012). Identify the lethal dose of EMS and gamma radiation mutagenesis in rice MR219. International Proceedings of Chemical, Biological and Environmental Engineering, 48, 22-26.
Torgovnick, A., & Schumacher, B. (2015). DNA repair mechanisms in cancer development and therapy. Frontiers in Genetics, 6, Article 157. https://doi.org/10.3389/fgene.2015.00157
Türkoğlu, A., Haliloğlu, K., Tosun, M., Bujak, H., Eren, B., Demirel, F., Szulc, P., Karagöz, H., Selwet, M., Özkan, G., & Niedbała, G. (2023). Ethyl methanesulfonate (EMS) mutagen toxicity-induced DNA damage, cytosine methylation alteration, and iPBS-retrotransposon polymorphisms in wheat (Triticum aestivum L.). Agronomy, 13(7), Article 1767. https://doi.org/10.3390/agronomy13071767
Tütüncü, M., Kantoğlu, K. Y., Kunter, B., & Mendi, Y. Y. (2023). Induced Mutations for Developing New Ornamental Varieties. In S. Penna & S. M. Jain (Eds.). Mutation Breeding for Sustainable Food Production and Climate Resilience (pp. 669-692). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9720-3_22
Waniale, A., Mukasa, S. B., Tugume, A. K., Barekye, A., & Tumuhimbise, R. (2024). Promising and failed breeding techniques for overcoming sterility and ıncreasing seed set in bananas (Musa spp.). Horticulturae, 10(5), Article 5. https://doi.org/10.3390/horticulturae10050513
Xu, L., Najeeb, U., Naeem, M. S., Wan, G. L., Jin, Z. L., Khan, F., & Zhou, W. J. (2012). In vitro mutagenesis and genetic ımprovement. In S. K. Gupta (Ed.). Technological Innovations in Major World Oil Crops, Volume 2 (pp. 151-173). Springer. https://doi.org/10.1007/978-1-4614-0827-7_6