Tailoring ZnO Nanostructures through Precursor Concentration and Hydrothermal Duration: A Pathway to Efficient Solar Water Splitting

Main Article Content

Phanlapa Borklom
Narathon Khemasiri
Sukittaya Jessadaluk
Prapakorn Rattanawarinchai
Navaphun Kayunkid
Sakon Rahong
Adirek Rangkasikorn
Supamas Wirunchit
Annop Klamchuen
Jiti Nukeaw

Abstract

This work investigated the formation of ZnO nanostructures on ITO substrates prepared by self-seeding hydrothermal synthesis for photoelectrochemical (PEC) water splitting applications. The hydrothermal parameters, precursor concentration and hydrothermal time, were varied to explore their influences on ZnO crystallinity, morphology, and PEC performance. The combinations of X-ray diffraction and field emission scanning electron microscopy revealed highly oriented ZnO nanostructures with diverse morphologies, including small granules, nanorods, dense films, and hexagonal platelets. Topographic profiling of the morphological parameters revealed complex relationships between synthesis conditions and nanostructure characteristics, highlighting the importance of considering aggregation phenomena in substrate-based growth. This aggregation led to deviations from conventional crystal growth theory predictions, particularly for grain density and diameter evolution. PEC performance evaluation identified ZnO nanorods as the optimal morphology, exhibiting a photocurrent density of 0.182 mA/cm² at 0 V vs. Ag/AgCl. Further enhancement was achieved by decorating ZnO nanorods with CdS nanoparticles, resulting in a six-fold increase in photocurrent density (1.2 mA/cm²). This improvement is attributed to expanded light absorption and improved charge separation at the CdS/ZnO interface. Our findings demonstrate the potential of rationally designed ZnO-based nanostructures in the advancement of solar-driven water splitting technologies and provide valuable insights for optimizing PEC systems through precise control of hydrothermal synthesis parameters, consideration of substrate-induced aggregation, and strategies for photoelectrochemical (PEC) water splitting applications.

Article Details

How to Cite
Borklom, P. ., Khemasiri, N. ., Jessadaluk, S. ., Rattanawarinchai, P. ., Kayunkid, N., Rahong, S. ., Rangkasikorn, A. ., Wirunchit, S. ., Klamchuen, A. ., & Nukeaw, J. (2025). Tailoring ZnO Nanostructures through Precursor Concentration and Hydrothermal Duration: A Pathway to Efficient Solar Water Splitting. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 26(1), e0264784. https://doi.org/10.55003/cast.2025.264784
Section
Original Research Articles

References

Ahmad, R., & Lee, B.-I. (2024). Facile fabrication of palm trunk–like ZnO hierarchical nanostructure–based biosensor for wide-range glucose detection. Chemical Engineering Journal, 492, Article 152432. https://doi.org/10.1016/j.cej.2024.152432

Almamari, M. R., Ahmed, N. M., Holi, A. M., Yam, F. K., Kyaw, H. H., Almessiere, M. A., & Al-Abri, M. Z. (2022). Some distinct attributes of ZnO nanorods arrays: Effects of varying hydrothermal growth time. Materials, 15(17), Article 5827. https://doi.org/10.3390/ma15175827

Al-Rasheedi, A., Salwati, A. A., & Aida, M. S. (2024). Growth of variable aspect ratio ZnO nanorods by hydrothermal technique. Physica Scripta, 99(6), Article 065996. https://doi.org/10.1088/1402-4896/ad4697

AL-Zahrani, A. A., Zainal, Z., Talib, Z. A., Ngee, J. L. H., Fudzi, L. M., Holi, A. M., & Ali, M. S. (2020). Effect of hydrothermal growth temperature and time on physical properties and photoanode performance of Zno nanorods. International Journal of Nanoelectronics and Materials, 13(2), 381-400.

Banerjee, R., Jayakrishnan, R., Banerjee, R., & Ayyub, P. (2000). Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. Journal of Physics: Condensed Matter, 12(50), Article 10647. https://doi.org/10.1088/0953-8984/12/50/325

Chen, Y. W., Liu, Y. C., Lu, S. X., Xu, C. S., Shao, C. L., Wang, C., Zhang, J. Y., Lu, Y. M., Shen, D. Z., & Fan, X. W. (2005). Optical properties of ZnO and ZnO: In nanorods assembled by sol-gel method. The Journal of Chemical Physics, 123(13), Article 134701. https://doi.org/10.1063/1.2009731

Chibac-Scutaru, A. L., Podasca, V.-E., Dascalu, I. A., Rusu, D., & Melinte, V. (2024). ZnO nanostructures with controlled morphological and optical properties for applications as efficient photocatalyst for malachite green degradation. Ceramics International, 50(18), 34291-34303. https://doi.org/10.1016/j.ceramint.2024.06.248

Cho, M. Y., Kim, M. S., Yim, K. G., Lee, D. Y., Kim, J. S., Kim, J. S., & Leem, J. Y. (2011). Effects of precursor concentrations and thermal annealing on ZnO nanorods grown by hydrothermal method. Journal of Nanoscience and Nanotechnology, 11(8), 7479-7482. https://doi.org/10.1166/jnn.2011.4783

Doiphode, V., Shinde, P., Punde, A., Shah, S., Kale, D., Hase, Y., Ladhane, S., Rahane, S., Waghmare, A., Bade, B., Rondiya, S., Prasad, M., Patole, S. P., & Jadkar, S. (2024). Solution-processed synthesis of ZnO/CdS heterostructure photoanode for efficient photoelectrochemical water splitting. Journal of Power Sources, 609, Article 234712. https://doi.org/10.1016/j.jpowsour.2024.234712

El ouardi, M., El Idrissi, A., Ahsaine, H. A., BaQais, A., Saadi, M., & Arab, M. (2024). Current advances on nanostructured oxide photoelectrocatalysts for water splitting: A comprehensive review. Surfaces and Interfaces, 45, Article 103850. https://doi.org/10.1016/j.surfin.2024.103850

Galdámez-Martínez, A., Bai, Y., Santana, G., Sprick, R. S., & Dutt, A. (2020). Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: Role of structural properties. International Journal of Hydrogen Energy, 45(56), 31942- 31951. https://doi.org/10.1016/j.ijhydene.2020.08.247

Georgiou, P., Kolokotronis, K., & Simitzis, J. (2009). Synthesis of ZnO nanostructures by hydrothermal method. Journal of Nano Research, 6, 157-168. https://doi.org/10.4028/ www.scientific.net/JNanoR.6.157

Hassanpour, A., Bogdan, N., Capobianco, J. A., & Bianucci, P. (2017). Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods. Materials and Design, 119, 464-469. https://doi.org/10.1016/j.matdes.2017.01.089

Hoang, N. H., Nguyen, V. N., & Doan, M. T. (2017). Optimization of an electrode made from CdS–ZnO nanorods for hydrogen generation from photoelectrochemical splitting of water. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(2), Article 025006. https://doi.org/10.1088/2043-6254/aa5e35

Holi, A. M., Zainal, Z., Talib, Z. A., Lim, H.-N., Yap, C.-C., Chang, S.-K., & Ayal, A. K. (2016). Effect of hydrothermal growth time on ZnO nanorod arrays photoelectrode performance. Optik, 127(23), 11111-11118. https://doi.org/10.1016/j.ijleo.2016.09.015

Hussain, K., Ahmad, R., Hassan, S., Khan, M. Y., Ahmad, A., Alshammari, M. B., Ali, M. S., Lakho, S. A., & Lee, B.-I. (2024). Electrochemical detection of nalbuphine drug using oval-like ZnO nanostructure -based sensor. Analytical Biochemistry, 693, Article 115595. https://doi.org/10.1016/j.ab.2024.115595

Joongpun, P., Feemuchang, K., Onlaor K., Thiwawong, T., & Tunhoo B. (2024). Facile synthesis of zinc oxide nanorods using a single-phase flow with 3d printed device. Thai Journal of Nanoscience and Nanotechnology, 9(1), 9-18.

Khan, Z. R., Alshammari, A. S., Bouzidi, M., Shkir, M., & Shukla, D. K. (2021). Improved optoelectronic performance of sol–gel derived ZnO nanostructured thin films. Inorganic Chemistry Communications, 132, Article 108812. https://doi.org/10.1016/j.inoche.2021.108812

Kolaei, M., Tayebi, M., Masoumi, Z., & Lee, B.-K. (2022). A novel approach for Improving photoelectrochemical water splitting performance of ZnO-CdS photoanodes: Unveiling the effect of surface roughness of ZnO nanorods on distribution of CdS nanoparticles. Journal of Alloys and Compounds, 906, Article 164314. https://doi.org/10.1016/j.jallcom.2022.164314

Kumar, B., & Kim, S.-W. (2012). Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 1(3), 342-355. https://doi.org/10.1016/j.nanoen.2012.02.001

Kumari, L., & Kar, A. K. (2018). Tuning the optical properties of ZnO nanorods by variation of precursor concentration through hydrothermal method. AIP Conference Proceedings, 1953(1), Article 030158. https://doi.org/10.1063/1.5032493

Lai, Y., Xiao, L., Tao, Y., Gao, Z., Zhang, L., Su, X., & Dai, Y. (2021). Enhancing one‐dimensional charge transport in metal‐organic framework hexagonal nanorods for electrocatalytic oxygen evolution. ChemSusChem, 14(8), 1830-1834. https://doi.org/10.1002/cssc.202100179

Lee, W. C., Fang, Y., Le, H., Hodgson, R., Chan, H. W. B., Qian, R., Alsohaimi, I. H., Canciani, G. E., Alhar, M. S., & Chen, Q. (2024). Enhanced photoelectrochemical water splitting by a 3D hierarchical sea urchin-like structure: ZnO nanorod arrays on TiO2 hollow hemisphere. Nanotechnology, 35(29), Article 295301. https://doi.org/10.1088/1361-6528/ad3e88

Leite, R. R., Colombo, R., Júnior, F. E. B., de Vasconcelos Lanza, M. R., da Silva Barud, H., Afonso, C. R. M., & Bernardi, M. I. B. (2024). Precursor effect on the hydrothermal synthesis of pure ZnO nanostructures and enhanced photocatalytic performance for norfloxacin degradation. Chemical Engineering Journal, 496, Article 154374. https://doi.org/10.1016/j.cej.2024.154374

Liang, S., Zhu, L., Gai, G., Yao, Y., Huang, J., Ji, X., Zhou, X., Zhang, D., & Zhang, P. (2014). Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property. Ultrasonics Sonochemistry, 21(4), 1335-1342. https://doi.org/10.1016/j.ultsonch.2014.02.007

Mustafa, M. K., Iqbal, Y., Majeed, U., & Sahdan, M. Z. (2017). Effect of precursor’s concentration on structure and morphology of ZnO nanorods synthesized through hydrothermal method on gold surface. AIP Conference Proceedings, 1788, Article 030120. https://doi.org/10.1063/1.4968373

Pagano, R., Bettini, S., Ottolini, M., Ciccarella, G., Valli, L., & Giancane, G. (2024). Piezo- and photo- responsive ZnO nanostructures for efficient tetracycline water remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, Article 132626. https://doi.org/10.1016/j.colsurfa.2023.132626

Palem, R. R., Kim, B. J., Baek, I., Choi, H., Suneetha, M., Shimoga, G., & Lee, S.-H. (2024). In situ fabricated ZnO nanostructures within carboxymethyl cellulose-based ternary hydrogels for wound healing applications. Carbohydrate Polymers, 334, Article 122020. https://doi.org/10.1016/j.carbpol.2024.122020

Polsongkram, D., Chamninok, P., Pukird, S., Chow, L., Lupan, O., Chai, G., Khallaf, H., & Schulte, A. (2008). Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B: Condensed Matter, 403(19-20), 3713-3717. https://doi.org/10.1016/j.physb.2008.06.020

Preeti, K., Kumar, A., Jain, N., Kaushik, A., Mishra, Y. K., & Sharma, S. K. (2023). Tailored ZnO nanostructures for efficient sensing of toxic metallic ions of drainage systems. Materials Today Sustainability, 24, Article 100515. https://doi.org/10.1016/j.mtsust.2023.100515

Promnimit, S., Baruah, S., Lamdu, U., & Dutta, J. (2013). Hydrothermal growth of ZnO hexagonal nanocrystals: Effect of growth conditions. Journal of Nano Research, 21, 57-63. https://doi.org/10.4028/www.scientific.net/JNanoR.21.57

Sha, R., Basak, A., Maity, P. C., & Badhulika, S. (2022). ZnO nano-structured based devices for chemical and optical sensing applications. Sensors and Actuators Reports, 4, Article 100098. https://doi.org/10.1016/j.snr.2022.100098

Siriphongsapak, N., Denchitcharoen, S., & Limsuwan, P. (2020). Hydrothermal growth of ZnO nanostructures using sodium hydroxide as a source of hydroxide ion. Materials Today: Proceedings, 23(Part 4), 712-719. https://doi.org/10.1016/j.matpr.2019.12.263

Wang, S., Cao, S., Wang, L., Zhan, X., Yang, H., Yang, W., & Hou, H. (2024). Enhanced photoelectrochemistry for energy conversion, environmental remediation, detection, and sensing through single-atom catalysts modified photoelectrodes: a comprehensive review. Materials Today Energy, 43, Article 101582. https://doi.org/10.1016/j.mtener.2024.101582

Wasly, H. S., El-Sadek, M. S. A., & Henini, M. (2018). Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Applied Physics A, 124, Article 76. https://doi.org/10.1007/s00339-017-1482-4

Wei, R.-B., Kuang, P.-Y., Cheng, H., Chen, Y.-B., Long, J.-Y., Zhang, M.-Y., & Liu, Z.Q. (2017). Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustainable Chemistry and Engineering, 5(5), 4249-4257. https://doi.org/10.1021/acssuschemeng.7b00242

Worasawat, S., Tasaki, K., Neo, Y., Hatanaka, Y., & Mimura, H. (2019). Vertically aligned ZnO nano-rods and its photo-conductive characteristics related to the catalytic properties. Thai Journal of Nanoscience and Nanotechnology, 4(1), 1-11.

Zhang, J., Que, W., Jia, Q., Ye, X., & Ding, Y. (2011). Controllable hydrothermal synthesis of ZnO nanowires arrays on Al-doped ZnO seed layer and patterning of ZnO nanowires arrays via surface modification of substrate. Applied Surface Science, 257(23), 10134-10140. https://doi.org/10.1016/j.apsusc.2011.06.163