Efficacy of Lentinus tigrinus for Kerosene Bioremediation
Main Article Content
Abstract
The strategy for removing pollutants in a sustainable and environmentally friendly manner, and the danger of the leakage of hydrocarbon compounds such as kerosene into the environment is important. Therefore, this study was focused on the potential of Lentinus tigrinus fungal biomass for the bioremediation of kerosene. A sample of mushroom Lentinus tigrinus was identified using morphlogical and molecular analyses. Kerosene was obtained from a petrol station (Al- thakafa) in the city of Mosul. Lentinus tigrinus fungal biomass was screened for its capability to degrade kerosene by culturing it on a solid medium supplied with kerosene at concentrations of 2, 4, and 6% compared to the control sample, and a liquid medium mineral salt medium (MSM). GC-MS chromatography was used to analyse the presence of kerosene before and after biodegradation process. After 7 days of incubation, L. tigrinus grew significantly at the probability level 0.01 on the medium supplemented with 2% kerosene (11.6 mm in diameter) compared with the control treatment without kerosense (14.83 mm in diamter). The result showed that kerosene was biodegraded into 15 compounds, most of which are hydrocarbon compounds, but in varying percentages depending on the retention time and percentage concentration of the compounds. The five most common compounds are (1) 1-heptanol, 2-propyl with a percentage of area of 8.60% , (2) 1-octanol 9.83%, (3) hexyl octadecyl ester 12.84%, (4) 7-methyl-1-undecene 12.05% and (5) isopropyl-5-methyl-1-hexanol 10.01%. While after treatment with the biomass of the fungal isolate after 14 days of incubation, kerosene was biodegraded into another 15 compounds with retention times and concentrations different from untreated kerosene. The most common of these compounds are (1) methyl 7,9-tridecadienyl ether 31.03%, (2) 4-fluoro-1-methyl-5-carboxylic acid 16.84%, and (3) triethylene glycol monododecyl ether 11.31%. From the results we can conclude that the biomass of the fungal isolate (identified morphologically and molecularly) has the ability to biologically degrade kerosene, whether on solid or liquid media.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abdulhadi, S. Y, Gergees, R. N, & Hasan, G. Q. (2020). Molecular identification, antioxidant efficacy of phenolic compounds, and antimicrobial activity of beta-carotene isolated from fruiting bodies of Suillus sp. Karbala International Journal of Modern Science, 6(4), Article 4. https://doi.org/10.33640/2405-609X.1966
Al-Dossary, M. A., Abood, S. A., & AL-Saad, H. T. (2019). Biodegradation of crude oil using Aspergillus species. Journal of Biology, Agriculture and Healthcare, 9(4, 60-64. https://doi.org/10.7176/JBAH/9-4-09
AL-Hakkak, Z. M, Jasim, S. A., Kadum, A. A. (2024). The impact of kerosene and naphtha fumes inhalation on lung tissue in rats. Biological and Biomedical Journal, 2(2), 115-121.
Al-Hulfi, R. A., Al Salem, B. A. M., & Al-Naiema, I. M. (2022). The effect of air pollutants on liver enzymes and pituitary gland hormones of smokers and non-smokers of oil refinery and gas station workers in Basra/Iraq. Indian Journal of Forensic Medicine and Toxicology, 16(3), 297-301. https://doi.org/10.37506/ijfmt.v16i3.18301
Al-Otibi, F., Al-Zahrani, R. M., & Marraiki, N. (2022). The crude oil biodegradation activity of Candida strains isolated from oil-reservoirs soils in Saudi Arabia. Scientific Reports, 12(1), Article 10708. https://doi.org/10.1038/s41598-022-14836-0
Asif, M., Saba, M., Maula, F. & Raza, M. (2024). Lentinus punjabensis (Polyporaceae), a new species from Lal Suhanra National Park, southern Punjab, Pakistan. Phytotaxa, 642(2), 169-181. https://doi.org/10.11646/phytotaxa.642.2.5
Bautista-Zamudio, P. A., Flórez-Restrepo, M. A., López-Legarda, X., Monroy-Giraldo, L. C., & Segura-Sánchez, F. (2023). Biodegradation of plastics by white rot fungi: A review. Science of the Total Environment, 901, Article 165950. https://doi.org/10.1016/j.scitotenv.2023.165950
Bekele, G. K., Gebrie, S. A., Abda, E. M., Sinshaw, G., Haregu, S., Negie, Z. W., Tafesse, M., & Assefa, F. (2023). Kerosene biodegradation by highly efficient indigenous bacteria isolated from hydrocarbon-contaminated sites. Microbiology Insights, 16, 1-9. https://doi.org/10.1177/11786361221150759
Bôto, M. L., Magalhães, C., Perdigão, R., Alexandrino, D. A. M., Fernandes, J. P., Bernabeu, A. M., Ramos, S., Carvalho, M. F., Semedo, M., La Roche, J., Almedia, C. M. R., & Mucha, A. P. (2021). Harnessing the potential of native microbial communities for bioremediation of oil spills in the Iberian Peninsula NW coast. Frontiers in Microbiology, 12, Article 633659. https://doi.org/10.3389/fmicb.2021.633659
Brejea, R., Boroș, M., Roșca, S., Traian, J. E., Budău, R., Borza, I. M., & Păcurar, I. (2023). Bioremediation of oil contaminated soil and restoration of land historically polluted with oil products in the agricultural circuit in the Plain and Western Hills, Romania. Applied Sciences, 13(18), Article 10245. https://doi.org/10.3390/app131810245
Daccò, C., Girometta, C., Asemoloye, M. D., Carpani, G., Picco, A. M., & Tosi, S. (2020). Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. International Biodeterioration and Biodegradation, 147, Article 104866. https://doi.org/10.1016/j.ibiod.2019.104866
Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, Article 941810.
Dopazo, J. (1994). Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. Journal of Molecular Evolution, 38, 300-304.
Dulay, R. M. R., Cabrera, E. C., Kalaw, S. P., Reyes, R. G., & Hou, C. T. (2020). Nutritional requirements for mycelial growth of three Lentinus species from the Philippines. Biocatalysis and Agricultural Biotechnology, 23, Article 101506. https://doi.org/10.1016/j.bcab.2020.101506
Dulay, R. M. R., & De Castro, M. E. G. (2016). Effect of lead (Pb) in mycelia and sporocarp of Lentinus tigrinus mushroom. International Journal of Biology, Pharmacy and Allied Sciences, 5(6), 1323-1331.
Fabros, J. A., Dulay, R. M. R., De Leon, A. M., Kalaw, S. P., & Reyes, R. G. (2022). Distribution, cultivation, nutritional composition, and bioactivities of Lentinus (Polyporaceae, Basidiomycetes): A review. Current Research in Environmental and Applied Mycology, 12(1), 170-219. https://doi.org/10.5943/cream/12/1/13
Hasan, G. Q., & Abdulhadi, S. Y. (2022). Molecular characterization of wild Pleurotus ostreatus (MW457626) and evaluation of β-glucans polysaccharide activities. Karbala International Journal of Modern Science, 8(1), 52-62.
Hasan, I. F. (2014). Biodegradation of kerosene by Aspergillus niger and Rhizopus stolinifer. Journal of Applied and Environmental Microbiology, 2(1), 31-36. https://doi.org/10.33640/2405-609X.3204
Ishaq, M., Galappaththi, M. C. A., Khan, M. B., Ullah, S., Fiaz, M., & Khalid, A. N. (2022). Lentinus squarrosulus an edible macro-fungus reported from Pakistan. Studies in Fungi, 7(1), Article 6. https://doi.org/10.48130/SIF-2022-0006
Jarjees, R. M., Abdul-Hadi, S. Y., & Al-Khesraji, T. O. (2023). First recording and molecular diagnostics of three ascomycetous macrofungi from Nineveh, Iraq. Journal of Advanced Education and Sciences, 3(3), 36-44.
Kaczorek, E., Bielicka-Daszkiewicz, K., Héberger, K., Kemény, S., Olszanowski, A., & Voelkel, A. (2014). Best conditions for biodegradation of diesel oil by chemometric tools. Brazilian Journal of Microbiology, 45, 117-126.
Kała, K., Kryczyk-Poprawa, A., Rzewińska, A., & Muszyńska, B. (2020). Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. European Food Research and Technology, 246, 713-722. https://doi.org/10.1007/s00217-020-03435-w
Khan, S. R., Nirmal, J. I. K., Kumar, R. N., & Patel, J. G. (2015). Biodegradation of kerosene: Study of growth optimization and metabolic fate of P. janthinellum SDX7. Brazilian Journal of Microbiology, 46(2), 397-406. https://doi.org/10.1590/S1517-838246220140112
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
Kuzina, E., Rafikova, G., Vysotskaya, L., Arkhipova, T., Bakaeva, M., Chetverikova, D., Kudoyarova, G., Korshunva, T., & Chetverikova, S. (2021). Influence of hydrocarbon-oxidizing bacteria on the growth, biochemical characteristics, and hormonal status of barley plants and the content of petroleum hydrocarbons in the soil. Plants, 10(8), Article 1745. https://doi.org/10.3390/plants10081745
Lednev, S. A., Semenkov, I. N., Klink, G. V., Krechetov, P. P., Sharapova, A. V., & Koroleva, T. V. (2021). Impact of kerosene pollution on ground vegetation of southern taiga in the Amur Region, Russia. Science of The Total Environment, 772, Article 144965. https://doi.org/10.1016/j.scitotenv.2021.144965
Liwanag, E. J., Dulay, R. M., & Kalaw, S. (2020). Mycelial growth of Philippine mushroom Lentinus tigrinus in selected cucurbit-based media and its antioxidant activity. Asian Journal of Agriculture and Biology, 8(3), 323-329. https://doi.org/10.35495/ajab.2019.12.577
Mittal, A., & Singh, P. (2009). Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian Journal of Experimental Biology, 47(9), 760-765.
Mohammed, S. A., Zrary, T. J. O., & Hasan, A. H. (2023). Degradation of crude oil and the pure hydrocarbon fractions by indigenous soil microorganisms. Biologia, 78(12), 3637-3651. https://doi.org/10.1007/s11756-023-01513-4
Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press.
Oudot, J. (1984). Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Marine Environmental Research, 13(4), 277-302.
Phillips, R. (2013). Mushrooms: A comprehensive guide to mushroom identification. Pan Macmillan.
Phonemany, M., Raghoonundon, B., Luangharn, T., Tang, S. M., Hyde, K. D., & Thongklang, N. (2021). A mini review on the potential pharmacological properties, cultivation, and market value of edible Lentinus mushrooms (Polyporaceae). Fungal Biotec, 1(2), 49-64. https://doi.org/10.5943/FunBiotec/1/2/4
Ragasa, C. Y., Tan, M. C. S., De Castro, M. E., De Los Reyes, M. M., Oyong, G. G., & Shen, C.-C. (2018). Sterols from Lentinus tigrinus. Pharmacognosy Journal, 10(6), 1079-1081. https://doi.org/10.5530/pj.2018.6.182
Raju, M. N., & Scalvenzi, L. (2017). Petroleum degradation: Promising biotechnological tools for bioremediation. In M. Zoveidavianpoor (Ed.). Recent insights in petroleum science and engineering. (pp. 351-368) IntechOpen. https://doi.org/10.5772/intechopen.70109
Rzhetsky, A. & Nei, M. (1992). A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution, 9, 945-967.
Saitou, N. & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
Senthilarasu, G. (2015). The lentinoid fungi (Lentinus and Panus) from Western ghats, India. IMA fungus, 6, 119-128. https://doi.org/10.5598/imafungus.2015.06.01.06
Suliaman, S. Q., AL-Khesraji, T. O., & Hassan, A. A. (2017). New records of basidiomycetous macrofugi from Kurdistan region-Northern Iraq. African Journal of Plant Science, 11(6), 209-219. https://doi.org/10.5897/AJPS2017.1543
Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101, 11030-11035. https://doi.org/10.1073/pnas.0404206101
Thouand, G., Bauda, P., Oudot, J., Kirsch, G., Sutton, C., & Vidalie, J. F. (1999). Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Canadian Journal of Microbiology, 45(2), 106-115. https://doi.org/10.1139/w98-210
Tomer, A., Singh, R., Singh, S. K., Dwivedi, S. A., Reddy, C. U., Keloth, M. R. A., & Rachel, R. (2021). Role of fungi in bioremediation and environmental sustainability. In R. Prasad, S. C. Nayak, R. N. Kharwar, & N. K. Dubey (Eds.). Mycoremediation and Environmental Sustainability. Volume 3 (pp. 187-200). Springer. https://doi.org/10.1007/978-3-030-54422-5_8
Watanabe, T. (2002). Pictorial atlas of soil and seed fungi. Morphologies of cultured fungi and key to species. (2nd ed.) CRC Press.
Zhang, L., Morisaki, H., Wei, Y., Li, Z., Yang, L., Zhou, Q., Zhang, X., Xing, W., Hu, M., Shima, M., Toriba, A., Hayakawa, K., & Tang, N. (2020). PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons inside and outside a primary school classroom in Beijing: Concentration, composition, and inhalation cancer risk. Science of the Total Environment, 705, Article 135840. https://doi.org/10.1016/j.scitotenv.2019.135840