LC/MS Analysis and ACE Inhibition Activity of Aqueous and Solvent Extracted Fractions of Selaginella bryopteris from Different Geolocations

Main Article Content

Utkarsha Srivastava
Ashwani Mathur

Abstract

Pteridophytes from different demographic locations are attracting scientific interest for exploration of environment mediated changes in their phytocompound compositions, with therapeutic and commercial importance. Selaginella bryopteris (L.) Baker is one such lithophytic pteridophyte that is endemic to Indian sub-continent. It is rich in a range of phytocompounds, including flavonoids and phenolics, some of which have been reported for their therapeutic properties including neuroprotection. The current work focused on a comparison of the composition and angiotensin converting enzyme (ACE) inhibition activities of three different geographical variants of S. bryopteris from Indian deccan terrain. The phytochemical and extraction yield analysis revealed the highest methanolic extract of 81.3 mg/g of dry plant. The methanolic fraction of germplasm was analysed by liquid chromatography-mass spectrometry and was rich in flavonoids and phenolics. The presence of important flavonoids, such as narignenin, may also be responsible for relatively high ACE inhibition activity of nearly 91%, which was found for all the extracts. In-silico toxicity analysis using ProTox 3.0 revealed the presence of less toxic phytocompounds (class 4 and 5). The pharmacokinetic studies using Swiss ADME suggested the pivotal role of phytocompounds in cardioprotective and neuroprotective properties. The study may be further extended for optimization of cultivation strategies for generation of phytocompound rich plant biomass.

Article Details

Section
Original Research Articles

References

Adnan, M., Siddiqui, A. J., Arshad, J., Hamadou, W. S., Awadelkareem, A. M., Sachidanandan, M., & Patel, M. (2021). Evidence-based medicinal potential and possible role of Selaginella in the prevention of modern chronic diseases: Ethnopharmacological and ethnobotanical perspective. Records of Natural Products, 15(5), 330-355. http://doi.org/10.25135/rnp.222.20.11.1890

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102

Alherz, F. A., El-Masry, T. A., Negm, W. A., & El-Kadem, A. H. (2022). Potential cardioprotective effects of Amentoflavone in doxorubicin-induced cardiotoxicity in mice. Biomedicine and Pharmacotherapy, 154, Article 113643. https://doi.org/10.1016/j.biopha.2022.113643

Auwal, M. S., Saka, S., Mairiga, I. A., Sanda, K. A., Shuaibu, A., & Ibrahim, A. (2014). Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Veterinary Research Forum, 5(2), 95-100.

Balasuriya, B. W. N., & Rupasinghe, H. P. V. (2011). Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Functional foods in health and disease, 1(5), 172-188. https://doi.org/10.31989/ffhd.v1i5.132

Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513-W520. https://doi.org/10.1093/nar/gkae303

Cheon, J., Fujioka, S., Dilkes, B. P., & Choe, S. (2013). Brassinosteroids regulate plant growth through distinct signaling pathways in Selaginella and Arabidopsis. PLoS One, 8(12), Article e81938. https://doi.org/10.1371/journal.pone.0081938

Cushman, D. W., & Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20(7), 1637-1648.

Cutrell, S., Alhomoud, I. S., Mehta, A., Talasaz, A. H., Van Tassell, B., & Dixon, D. L. (2023). ACE-Inhibitors in Hypertension: A historical perspective and current insights. Current Hypertension Reports, 25(9), 243-250.

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), Article 42717. https://doi.org/10.1038/srep42717

DeGoey, D. A., Chen, H. J., Cox, P. B., & Wendt, M. D. (2018). Beyond the rule of 5: lessons learned from AbbVie’s drugs and compound collection: miniperspective. Journal of medicinal chemistry, 61(7), 2636-2651. https://doi.org/10.1021/acs.jmedchem.7b00717

Demehin, A. A., Thamnarak, W., Lamtha, T., Chatwichien, J., Eurtivong, C., Choowongkomon, K., Chainok, K., Ruchirawat, S., & Thasana, N. (2022). Siamenflavones A-C, three undescribed biflavonoids from Selaginella siamensis Hieron. and biflavonoids from spike mosses as EGFR inhibitor. Phytochemistry, 203, Article 113374. https://doi.org/10.1016/j.phytochem.2022.113374

Ehlers, M., Uttl, L., Riedl, J., Raeke, J., Westkamp, I., Hajslova, J., Brockmeyer, J., & Fauhl-Hassek, C. (2023). Instrument comparability of non-targeted UHPLC-HRMS for wine authentication. Food Control, 144, Article 109360. https://doi.org/10.1016/j.foodcont.2022.109360

El-Sohaimy, S. A., Shehata, M. G., Mathur, A., Darwish, A. G., El-Aziz, N. M. A., Gauba, P., & Upadhyay, P. (2022). Nutritional evaluation of sea buckthorn “Hippophae rhamnoides” berries and the pharmaceutical potential of the fermented juice. Fermentation, 8(8), Article 391. https://doi.org/10.3390/fermentation8080391

Gautam, A., Pal, L. C., Rao, C. V., & Kumar, V. (2023). The role of Indian magical herb Selaginella bryopteris L. (Selaginaceae) in pharmacotherapeutic perspective: An overview. Pharmacognosy Journal, 15(1), 14-20. https://doi.org/10.5530/pj.2023.15.3

Guerrero, L., Castillo, J., Quinones, M., Garcia-Vallve, S., Arola, L., Pujadas, G., & Muguerza, B. (2012). Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PloS One, 7(11), Article e49493. https://doi.org/10.1371/journal.pone.0049493

Guldiken, B., Ozkan, G., Catalkaya, G., Ceylan, F. D., Yalcinkaya, I. E., & Capanoglu, E. (2018). Phytochemicals of herbs and spices: Health versus toxicological effects. Food and Chemical Toxicology, 119, 37-49. https://doi.org/10.1016/j.fct.2018.05.050

Iloki-Assanga, S. B., Lewis-Luján, L. M., Lara-Espinoza, C. L., Gil-Salido, A. A., Fernandez-Angulo, D., Rubio-Pino, J. L., & Haines, D. D. (2015). Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Research Notes, 8, Article 396. https://doi.org/10.1186/s13104-015-1388-1

Jagadish, L. K., Krishnan, V. V., Shenbhagaraman, R., & Kaviyarasan, V. (2009). Comparitive study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus (J.E. Lange) Imbach before and after boiling. African Journal of Biotechnology, 8(4), 654-661.

Javed, A., Azmat, R., Batool, M., Aqib, A. I., Hussain, S. A., & Ishtiaq, A. (2024). Hepatoprotective potential of sciadopitysin against paraquat induced liver damage in rats. Journal of King Saud University-Science, 36(8), Article 103328. https://doi.org/10.1016/j.jksus.2024.103328

Kumar, B. R. (2017). Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). Journal of Pharmaceutical Analysis, 7(6), 349-364. https://doi.org/10.1016/j.jpha.2017.06.005

Liu, W., Yin, D., Li, N., Hou, X., Wang, D., Li, D., & Liu, J. (2016). Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Scientific Reports, 6(1), Article 28591. https://doi.org/10.1038/srep28591

Mutha, R. E., Tatiya, A. U., & Surana, S. J. (2021). Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future Journal of Pharmaceutical Sciences, 7, Article 25. https://doi.org/10.1186/s43094-020-00161-8

Oyagbemi, A.A., Omobowale, T. O., Adejumobi, O., A., Owolabi, A., M., Ogunpolu, B. S., Falayi, O. O., Hassan, F. O., Ogunmiluyi, I. O., Asenuga, E. R., Ola-Davies, O. E., Soetan, K. O., Saba, A. B., Adedapo, A. A., Nkadimeng, S. M., McGaw, L. J., Oguntibeju, O. O., & Yakubu, M. A. (2020). Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/ angiotensin converting enzyme (ACE)/ kidney injury molecule (Kim-1) signaling pathway. European Journal of Pharmacology, 880, Article 173142. https://doi.org/10.1016/j.ejphar.2020.173142

Pandey, S., Shukla, A., Pandey, S., & Pandey, A. (2017). An overview of resurrecting herb ‘Sanjeevani’ (Selaginella bryopteris) and its pharmacological and ethnomedicinal uses. The Pharma Innovation Journal, 6(2), 11-14.

Pant, P., Pandey, S., & Dall'Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry and Biodiversity, 18(11), Article e2100345. https://doi.org/10.1002/cbdv.202100345

Sarvade, D. D., Rakesh, G., Shukla, V. J., & Acharya, R. (2020). Quantification of total alkaloid, tannin, flavonoid, phenolic, and chlorogenic acid contents of Leea macrophylla Roxb. Ex Hornem. International Journal of Green Pharmacy, 14(2), 138-145.

Sharma, T., Pandey, B., Shrestha, B. K., Koju, G. M., Thusa, R., & Karki, N. (2020). Phytochemical screening of medicinal plants and study of the effect of phytoconstituents in seed germination. Tribhuvan University Journal, 35(2), 1-11. https://doi.org/10.3126/tuj.v35i2.36183

Shi, Y., Yang, L., Yu, M., Li, Z., Ke, Z., Qian, X., Ruan, X., He, L., Wei, F., Zhao, Y., & Wang, Q. (2022). Seasonal variation influences flavonoid biosynthesis path and content, and antioxidant activity of metabolites in Tetrastigma hemsleyanum Diels & Gilg. PLoS One, 17(4), Article e0265954. https://doi.org/10.1371/journal.pone.0265954

Swamy, R. C., Kunert, O., Schühly, W., Bucar, F., Ferreira, D., Rani, V. S., Kumar, B. R., & Rao, A. V. N. A. (2006). Structurally unique biflavonoids from Selaginella chrysocaulos and Selaginella bryopteris. Chemistry and Biodiversity, 3(4), 405-413. https://doi.org/10.1002/cbdv.200690044

Tiwari, P., Kumar, B., Kaur, M., Kaur, G., & Kaur, H. (2011) Phytochemical screening and extraction: a review. Internationale Pharmaceutica Sciencia 1(1), 98-106.

Thouri, A., Chahdoura, H., El Arem, A., Omri Hichri, A., Ben Hassin, R., & Achour, L. (2017). Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complementary and Alternative Medicine, 17, Article 248. https://doi.org/10.1186/s12906-017-1751-y

Tourabi, M., Metouekel, A., Ghouizi, A. E. L., Jeddi, M., Nouioura, G., Laaroussi, H., Hosen, M. E., Benbrahim, K. F., Salamatullah, A. M., Nafidi, H.-A., Wondmie, G. F., Lyoussi, B. & Derwich, E. (2023). Efficacy of various extracting solvents on phytochemical composition, and biological properties of Mentha longifolia L. leaf extracts. Scientific Reports, 13(1), Article 18028. https://doi.org/10.1038/s41598-023-45030-5

Utomo, R. Y., Ikawati, M., & Meiyanto, E. (2020). Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints, 2020, Article 2020030214. https://doi.org/10.20944/preprints202003.0214.v1

Weng, J.-K., & Noel, J. P. (2013). Chemodiversity in Selaginella: a reference system for parallel and convergent metabolic evolution in terrestrial plants. Frontiers in Plant Science, 4, Article 119. https://doi.org/10.3389/fpls.2013.00119

WHO. (2021, June 11). Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Zeng, X., Zhang, P., He, W., Qin, C., Chen, S., Tao, L., Wang, Y., Tan, Y., Gao, D., Wang, B., Chen, Z., Chen, W., Jiang, Y. Y., & Chen, Y. Z. (2018). NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Research, 46(D1), D1217-D1222. https://doi.org/10.1093/nar/gkx1026