A Comparative Study on the Post-treatment Process of Sputtered SnO2 Nanorod OAD Films
Main Article Content
Abstract
The effects of single-step and two-step annealing and O2 plasma treatments on SnO2 slanted nanorods (SNR) films fabricated using DC magnetron sputtering and oblique angle deposition (OAD) was investigated in this study. The FE-SEM, AFM, and GI-XRD analyses demonstrate that both treatment approaches significantly influenced the film tilt angle, thickness, and surface morphology. After annealing, nanorod separation improved, surface roughness increased, and crystallinity was enhanced, particularly in the (110), (101), and (211) planes of the tetragonal rutile phase. In contrast, oxygen plasma treatments caused etching, reduced film thickness, and formed nano-necks at the tips of the slanted nanorods, leading to a reduction in crystallinity. Additionally, two-step treatments, particularly annealing followed by plasma treatment, achieved the best crystallinity while minimizing the etching effects of plasma. Finally, the optical properties, investigated using a UV–Vis–NIR spectrophotometer, demonstrated a progressive decrease in average transmittance within the visible region, from 86% to 79%, corresponding to the increasing number of post-treatment steps. In parallel, the optical bandgap was also found to decrease with additional treatments, shifting from 4.14 eV to 3.84 eV. The results highlight the importance of structural modifications in SnO2 SNR films, as they directly influence film properties and enhance the potential for advanced optoelectronic device applications.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Angel, B., Ana, B., Agustin, R. G-E., & Alberto, P. (2016). Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Materials Chemistry and Physics, 76, 59-153. https://doi.org/10.1016/j.pmatsci.2015.06.003
Babu, B., Talluri, B., Gurugubelli, T. R., Kim, J., & Yoo, K. (2022). Effect of annealing environment on the photoelectrochemical water oxidation and electrochemical supercapacitor performance of SnO2 quantum dots. Chemosphere, 286(Part 1), Article 131577. https://doi.org/10.1016/j.chemosphere.2021.131577
Chen, F., Chen, G., Huang, J., Chen, W., Guo, Y., Ma, J., Zhao, Z., Li, T., & Ostrikov, K. (Ken). (2024). Plasma-surface-modified SnO2–CuCl nanocomposite for highly selective electrocatalytic CO2 conversion. Ceramics International, 50(5), 8439-8447. https://doi.org/10.1016/j.ceramint.2023.12.179
Dalapati, G. K., Sharma, H., Guchhait, A., Chakrabarty, N., Bamola, P., Liu, Q., Saianand, G., Krishna, A. M. S., Mukhopadhyay, S., Dey, A., Wong, T. K. S., Zhuk, S., Ghosh, S., Chakrabortty, S., Mahata, C., Biring, S., Kumar, A., Ribeiro, C. S., Ramakrishna, S., Chakraborty, A. K., Krishnamurthy, S.,…Sharma, M. (2021). Tin oxide for optoelectronic, photovoltaic and energy storage devices: A review. Journal of Materials Chemistry A, 9(31), 16621-16684. https://doi.org/10.1039/d1ta01291f
Dangi, R., Basnet, B., Pandey, M., Bhusal, S., Budhathoki, B., Parajuli, K., Tiwari, S. K., & Kafle, B. P. (2023). Effect of oxygen vacancy on the crystallinity and optical band gap in tin oxide thin film. Energies, 16(6), Article 2653. https://doi.org/10.3390/en16062653
Deka, R. C., Deka, A., Deka, P., Saikia, S., Baruah, J., & Sarma, P. J. (2020). Recent advances in nanoarchitectonics of SnO2 clusters and their applications in catalysis. Journal of Nanoscience and Nanotechnology, 20(8), 5153-5161. https://doi.org/10.1166/jnn.2020.18539
Doubi, Y., Hartiti, B., Siadat, M., Ziti, A., Stitou, M., Nkuissi, H. J. T., Labrim, H., Fadili, S., Tahri, M., Thevenin, P., & Losson, E. (2022).
Theoretical validation of the properties of SnO2 nanostructure grown by robust spray pyrolysis technique for formaldehyde gas sensor. Materials Today: Proceedings, 66(Part 1), 341-345. https://doi.org/10.1016/j.matpr.2022.05.440
Hadi, A. J., Nayef, U. M., Mutlak, F. A.-H., & Jabir, M. S. (2024). Enhancing photodetection performance through laser fluence control: SnO2 nanostructured deposited on porous silicon. Optics and Laser Technology, 179, Article 111338. https://doi.org/10.1016/j.optlastec.2024.111338
Hasani, E. (2022). Effect of treatment time and radio frequency power on roughness and wettability of oxygen plasma-etched cadmium telluride thin films. Thin Solid Films, 761, Article 139499. https://doi.org/10.1016/j.tsf.2022.139499
Ihsan, S., Zulfiqar, S., Khattak, S. A., Albargi, H. B., Khan, A., Rooh, G., Khan, T., Khan, G., & Ullah, I. (2025). The effect of solvent on the structural, morphological, optical and dielectric properties of SnO2 nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 165, Article 116095. https://doi.org/10.1016/j.physe.2024.116095
Joshi, S. M., Book, G. W., & Gerhardt, R. A. (2012). A comparative study of the effect of annealing and plasma treatments on the microstructure and properties of colloidal indium tin oxide films and cold-sputtered indium tin oxide films. Thin Solid Films, 520(7), 2723-2730. https://doi.org/10.1016/j.tsf.2011.11.052
Kumar, P., Khadtare, S., Park, J., & Yadav, B. C. (2020). Fabrication of leaf shaped SnO2 nanoparticles via sol–gel route and its application for the optoelectronic humidity sensor. Materials Letters, 278, 128451. https://doi.org/10.1016/j.matlet.2020.128451
Lee, J., Min, H., Choe, Y.-S., Lee, Y. G., Kim, K., Lee, H.-S., & Lee, W. (2023). Highly sensitive and selective detection of benzene, toluene, xylene, and formaldehyde using Au-coated SnO2 nanorod arrays for indoor air quality monitoring. Sensors and Actuators B: Chemical, 394. Article 134359. https://doi.org/10.1016/j.snb.2023.134359
Li, D., Xu, K., Zhenyu, N., & Zhang, C. (2022). Annealing and plasma effects on the structural and photocatalytic properties of TiO2 fibers produced by electrospinning. Catalysts, 12(11), Article 1441. https://doi.org/10.3390/catal12111441
Limwichean, S., Eiamchai, P., Ponchio, C., Kasayapanand, N., & Horprathum, M. (2021). Comparative investigations of DCMS/HiPIMS reactively sputtered WO3 thin films for photo-electrochemical efficiency enhancements. Vacuum, 185, Article 109978. https://doi.org/10.1016/j.vacuum.2020.109978
Liu, D., Zheng, H., Ahmed, Y., Zheng, C., Wang, Y., Chen, H., Chen, L., & Li, S. (2022). Enhanced photovoltaic performance of SnO2 based flexible perovskite solar cells via introducing interfacial dipolar layer and defect passivation. Journal of Power Sources, 519, Article 230814. https://doi.org/10.1016/j.jpowsour.2021.230814
Martin, P. M. (2009). Handbook of deposition technologies for films and coatings. (3rd ed.). Elsevier.
Moon, H. G., Choi, Y. R., Shim, Y.-S., Choi, K.-I., Lee, J.-H., Kim, J.-S., Yoon, S.-J., Park, H.-H., Kang, C.-Y., & Jang, H. W. (2013). Extremely sensitive and selective NO probe based on villi-like WO3 nanostructures for application to exhaled breath analyzers. ACS Applied Materials and Interfaces, 5(21), 10591-10596. https://doi.org/10.1021/am402456s
Mun, H., Yang, H., Park, J., Ju, C., & Char, K. (2015). High electron mobility in epitaxial SnO₂₋ₓ in semiconducting regime. APL Materials, 3(7), 076107. https://doi.org/10.1063/1.4927470
Mykhailo, C., Ivan, K., Peter, K., Tomáš, D., Valérie, P., Arnaud, C., Nataliya, T., Vladimír, M., & Kateřina, V. (2019). Tailoring of highly porous SnO2 and SnO2-Pd thin films. Materials Chemistry and Physics, 232, 485-492. https://doi.org/10.1016/j.matchemphys.2018.11.022
Orimi, L. R., & Maghouli, M. (2016). Optical characterization of SnO2 nanostructure thin films, annealed at different temperatures. Optik, 127(1), 263-266. https://doi.org/10.1016/j.ijleo.2015.10.033
Oros, C., Horprathum, M., Wisitsoraat, A., Srichaiyaperk, T., Samransuksamer, B., Limwichean, S., Eiamchai, P., Phokharatkul, D., Nuntawong, N., Chananonnawathorn, C., Patthanasettakul, V., Klamchuen, A., Kaewkhao, J., Tuantranont, A., & Chindaudom, P. (2016). Ultra-sensitive NO2 sensor based on vertically aligned SnO2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique. Sensors and Actuators B: Chemical, 223, 936-945. https://doi.org/10.1016/j.snb.2015.09.104
Pan, L., Li, W., Yang, S-E., Zang, J., Guo, H., Xia, T., Shen, W., & Chea, Y. (2019). Effects of annealing conditions on the properties of SnO films deposited by e-beam evaporation process. Materials Letters, 257, Article 126737. https://doi.org/10.1016/j.matlet.2019.126737
Patrun, D., Zhao, S., Aytuna, Z., Fischer, T., Miess, M., Hong, Z., & Mathur, S. (2024). Plasma-enhanced SnO2-x thin films on copper current collector for safer lithium metal batteries. Nano Energy, 128(Part A), Article 109836. https://doi.org/10.1016/j.nanoen.2024.109836
Rasoo, S., Saritha, K., Reddy, K. T. R., Tivanov, M. S., Gremenok, V. F., Zimin, S. P., Pipkova, A. S., Mazaletskiy, L. A., & Amirov, I. I. (2020). Annealing and plasma treatment effect on structural, morphological and topographical properties of evaporated β-In2S3 films. Materials Research Express, 7(1), Article 016431. https://doi.org/10.1088/2053-1591/ab6a5b
Song, Y. G., Shim, Y. S., Kim, S., Han, S. D., Moon, H. G., Noh, M. S., Lee, K., Lee, H. R., Kim, J. S., Ju, B. K., & Kang, C. Y. (2017). Downsizing gas sensors based on semiconducting metal oxide: Effects of electrodes on gas sensing properties. Sensors and Actuators B: Chemical, 248, 949-956. https://doi.org/10.1016/j.snb.2017.02.035
Sun, C., Yang, J., Xu, M., Cui, Y., Ren, W., Zhang, J., Zhao, H., & Liang, B. (2022). Recent intensification strategies of SnO2-based photocatalysts: A review. Chemical Engineering Journal, 427, Article 131564. https://doi.org/10.1016/j.cej.2021.131564
Tao, Y., Zhu, B., Yang, Y., Wu, J., & Shi, X. (2020). The structural, electrical, and optical properties of SnO2 films prepared by reactive magnetron sputtering: Influence of substrate temperature and O2 flow rate. Materials Chemistry and Physics, 250, Article 123129. https://doi.org/10.1016/j.matchemphys.2020.123129
Velevska, J., Stojanov, N., Pecovska-Gjorgjevich, M., & Najdoski, M. (2017). Electrochromism in tungsten oxide thin films prepared by chemical bath deposition. Journal of Electrochemical Science and Engineering, 7(1), 27-37. https://doi.org/10.5599/jese.357
Xavier, J. R., Dhanalakshimi, C., Chandraraj, S. S., & Vinodhini, S. P. (2023). Bionanocomposites containing SnO2 with improved chemical resistance and hydrophobic behaviours for applications in food packaging industry, Transactions of Nonferrous Metals Society of China, 33(7), 2136-2154. https://doi.org/10.1016/S1003-6326(23)66249-1
Xie, Z., Shuang, S., Ma, L., Zhu, F., Liu, X., & Zhang, Z. (2017). Annealing effect on the photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays. RSC Advances, 7(81), 51382-51390. https://doi.org/10.1039/C7RA09801D
Zakaria, Y., Aïssa, B., Fix, T., Ahzi, S., Samara, A., Mansour, S., & Slaoui, A. (2022). Study of wide bandgap SnOx thin films grown by a reactive magnetron sputtering via a two-step method. Scientific Reports, 12(1), Article 15294. https://doi.org/10.1038/s41598-022-19270-w
Zhang, Y., Li, J., An, G., & He, X. (2010). Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sensors and Actuators B: Chemical, 144(1), 43-48. https://doi.org/10.1016/j.snb.2009.10.012