Activated Carbon-Supported Lipase as Biocatalyst for Biodiesel Synthesis from Crude Palm Oil
Main Article Content
Abstract
Biodiesel is a renewable energy source with significant potential to reduce reliance on fossil fuels. In its production, crude palm oil (CPO) is commonly processed through transesterification, a reaction often catalyzed by lipase enzymes. While these enzymes are effective, their single-use nature results in high production costs. To address this issue, immobilizing lipase enzymes on activated carbon offers a promising solution, enabling the reuse of the enzyme and reducing costs. This study aimed to evaluate the effectiveness of activated carbon as a support for lipase immobilization in biodiesel production from CPO. The immobilization process involved incubating 1 g of activated carbon with 1 mL of lipase and 9 mL of 0.01 M Tris HCl buffer at 30°C for 6 h. The morphology of the immobilized lipase on activated carbon was analyzed using transmission electron microscopy (TEM) and the immobilized lipase exhibited a catalytic activity of 2.95 U/mg. Biodiesel synthesis was carried out with 50 g of CPO and 3 g of immobilized lipase as a catalyst, at 30°C for 24 h, with gradual methanol addition. The biodiesel was then analyzed, showing an acid value of 1.94 mg-NaOH/g, a saponification value of 143.61 mg-KOH/g, a free glycerol content of 0.06%-mass, a total glycerol content of 0.23%-mass, an ester content of 95.70%, a density of 872.09 kg/m³ at 40°C, and a kinematic viscosity of 6 mm²/s at 40°C. This study offers a more sustainable and cost-effective method for biodiesel production, highlighting the potential of immobilized enzymes to enhance renewable energy practices.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Akkarawatkhoosith, N., Bangjang, T., Kaewchada, A., & Jaree, A. (2023). Biodiesel production from rice bran oil fatty acid distillate via supercritical hydrolysis–esterification–transesterification in a microreactor. Energy Reports, 9, 5299-5305. https://doi.org/10.1016/j.egyr.2023.04.348
Amini, Z., Ilham, Z., Ong, H. C., Mazaheri, H., & Chen, W.-H. (2017). State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management, 141, 339-353. https://doi.org/10.1016/j.enconman.2016.09.049
Baroutian, S., Aroua, M. K., Raman, A. A. A., & Sulaiman, N. M. N. (2010). Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil. Fuel Processing Technology, 91(11), 1378-1385. https://doi.org/10.1016/j.fuproc.2010.05.009
Buasri, A., Kamsuwan, J., Dokput, J., Buakaeo, P., Horthong, P., & Loryuenyong, V. (2024). Green synthesis of metal oxides (CaO-K2O) catalyst using golden apple snail shell and cultivated banana peel for production of biofuel from non-edible Jatropha curcas oil (JCO) via a central composite design (CCD). Journal of Saudi Chemical Society, 28(3), Article 101836. https://doi.org/10.1016/j.jscs.2024.101836
Canet, A., Bonet-Ragel, K., Benaiges, M. D., & Valero, F. (2016). Lipase-catalysed transesterification: Viewpoint of the mechanism and influence of free fatty acids. Biomass and Bioenergy, 85, 94-99. https://doi.org/10.1016/j.biombioe.2015.11.021
Facin, B., Quinto, E., Valerio, A., Oliveira, D., Oliveira, J., & Fernandez-Lorente, G. (2021). Strategies for the immobilization of Eversa® transform 2.0 lipase and application for phospholipid synthesis. Catalysts, 11(10), Article 1236. https://doi.org/10.3390/catal11101236
Farobie, O., Jannah, Q. R., & Hartulistiyoso, E. (2021). Biodiesel production from crude palm oil under different free fatty acid content using eversa® transform 2.0 enzyme. International Journal of Renewable Energy Research, 11(4), 1590-1596.
Hajar, S., Novany, A. A., Windarto, A. P., Wanto, A., & Irawan, E. (2020). Penerapan K-means clustering pada ekspor minyak kelapa sawit menurut negara tujuan. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) (pp. 314-318). https://prosiding.seminar-id.com/index.php/sainteks
Hama, S., Yamaji, H., Fukumizu, T., Numata, T., Tamalampudi, S., Kondo, A., Noda, H., & Fukuda, H. (2007). Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal, 34(3), 273-278. https://doi.org/10.1016/j.bej.2006.12.013
Hartulistiyoso, E., Farobie, O., & Rholanjiba, S. (2022). Comparative study on the effect of catalyst to the yield of biodiesel from Kemiri Sunan (Reutealis trisperma) oil. IOP Conference Series: Earth and Environmental Science, 1034(1), Article 012024. https://doi.org/10.1088/1755-1315/1034/1/012024
Helwani, Z., Zahrina, I., Tanius, N., Fitri, D. A., Tantino, P., Muslem, M., Othman, M. R., & Idroes, R. (2021). Polyunsaturated fatty acid fractionation from crude palm oil (CPO). Processes, 9(12), Article 2183. https://doi.org/10.3390/pr9122183
Istiningrum, R. B., Aprianto, T., & Pamungkas, F. L. U. (2017). Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst. AIP Conference Proceedings, 1911, Article 020031. https://doi.org/10.1063/1.5016024
Korman, T. P., Sahachartsiri, B., Charbonneau, D. M., Huang, G. L., Beauregard, M., & Bowie, J. U. (2013). Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnology for Biofuels, 6(1), Article 70. https://doi.org/10.1186/1754-6834-6-70
Mandari, V., & Devarai, S. K. (2022). Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: a critical review. BioEnergy Research, 15(2), 935-961. https://doi.org/10.1007/s12155-021-10333-w
Martinez-Sanchez, J. A., Arana-Peña, S., Carballares, D., Yates, M., Otero, C., & Fernandez-Lafuente, R. (2020). Immobilized biocatalysts of eversa® transform 2.0 and lipase from Thermomyces lanuginosus: Comparison of some properties and performance in biodiesel production. Catalysts, 10(7), Article 738. https://doi.org/10.3390/catal10070738
Mehmood, U., Muneer, F., Riaz, M., Sarfraz, S., & Nadeem, H. (2021). Biocatalytic processes for biodiesel production. In Inamuddin, M. I. Ahamed, R. Boddula, & M. Rezkazemi (Eds.). Biodiesel technology and applications (pp. 1-58). Wiley. https://doi.org/10.1002/9781119724957.ch1
Moazeni, F., Chen, Y.-C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 216, 117-128. https://doi.org/10.1016/j.jclepro.2019.01.181
Mortazavi, S., & Aghaei, H. (2020). Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. International Journal of Biological Macromolecules, 164, 1-12. https://doi.org/10.1016/j.ijbiomac.2020.07.103
Nizam, A. F. A., & Mahmud, M. S. (2021). Food quality assurance of crude palm oil: a review on toxic ester feedstock. OCL, 28, Article 23. https://doi.org/10.1051/ocl/2021011
Norjannah, B., Ong, H. C., Masjuki, H. H., Juan, J. C., & Chong, W. T. (2016). Enzymatic transesterification for biodiesel production: a comprehensive review. RSC Advances, 6(65), 60034-60055. https://doi.org/10.1039/C6RA08062F
Parandi, E., Safaripour, M., Mosleh, N., Saidi, M., Rashidi Nodeh, H., Oryani, B., & Rezania, S. (2023). Lipase enzyme immobilized over magnetic titanium graphene oxide as catalyst for biodiesel synthesis from waste cooking oil. Biomass and Bioenergy, 173, Article 106794. https://doi.org/10.1016/j.biombioe.2023.106794
Pazouki, M., Zamani, F., Zamzamian, S. A. H., & Najafpour, G. (2011). Study on reaction conditions in whole cell biocatalyst methanolysis of pretreated used cooking oil. In World renewable energy congress 2011 (pp. 93-100). Linköping. https://doi.org/10.3384/ecp1105793
Pillai, N. S., Kannan, P. S., Vettivel, S. C., & Suresh, S. (2017). Optimization of transesterification of biodiesel using green catalyst derived from Albizia Lebbeck Pods by mixture design. Renewable Energy, 104, 185-196. https://doi.org/10.1016/j.renene.2016.12.035
Quayson, E., Amoah, J., Hama, S., Kondo, A., & Ogino, C. (2020). Immobilized lipases for biodiesel production: Current and future greening opportunities. Renewable and Sustainable Energy Reviews, 134, Article 110355. https://doi.org/10.1016/j.rser.2020.110355
Rachmadona, N., Harada, Y., Amoah, J., Quayson, E., Aznury, M., Hama, S., Kondo, A., & Ogino, C. (2022). Integrated bioconversion process for biodiesel production utilizing waste from the palm oil industry. Journal of Environmental Chemical Engineering, 10(3), Article 107550. https://doi.org/10.1016/j.jece.2022.107550
Rachmadona, N., Quayson, E., Amoah, J., Alfaro-Sayes, D. A., Hama, S., Aznury, M., Kondo, A., & Ogino, C. (2021). Utilizing palm oil mill effluent (POME) for the immobilization of Aspergillus oryzae whole-cell lipase strains for biodiesel synthesis. Biofuels, Bioproducts and Biorefining, 15(3), 804-814. https://doi.org/10.1002/bbb.2202
Rahman, N. J. A., Ramli, A., Jumbri, K., & Uemura, Y. (2019). Tailoring the surface area and the acid–base properties of ZrO2 for biodiesel production from Nannochloropsis sp. Scientific Reports, 9(1), Article 16223. https://doi.org/10.1038/s41598-019-52771-9
Ramos, M., Dias, A. P. S., Puna, J. F., Gomes, J., & Bordado, J. C. (2019). Biodiesel production processes and sustainable raw materials. Energies, 12(23), Article 4408. https://doi.org/10.3390/en12234408
Secretariat General of DEN. (2020). Menteri ESDM: Cadangan Minyak Indonesia Tersedia untuk 9,5 Tahun dan Cadangan Gas 19,9 Tahun.
Yunsari, S., Rusdianasari, & Husaini, A. (2019). CPO based biodiesel production using microwaves assisted method. Journal of Physics: Conference Series, 1167, Article 012036. https://doi.org/10.1088/1742-6596/1167/1/012036