Effect of Dopant Gas Sources on the Properties of Boron Doped p-a-Si1-xOx:H Films and Their Application to a-Si1-xOx:H Thin Film Solar Cells

Main Article Content

Sorapong Inthisang
Kobsak Sriprapha

Abstract

Hydrogenated amorphous silicon (a-Si:H) thin-film solar cells offer low-cost production and flexibility, making them promising for renewable energy applications. This study examined the effects of the dopant gases diborane (B2H6), trimethyl boron (TMB), and a B2H6 + TMB combination on the optical and electrical properties of boron-doped hydrogenated amorphous silicon oxide (p-a-Si1-xOx:H) films for window layers in a-Si:H solar cells. Films were fabricated using very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD), optimizing doping concentrations to balance a high optical bandgap (Eopt) and conductivity. TMB-doped films exhibited higher Eopt and better optical properties, while the B2H6 + TMB combination improved conductivity and overall performance. Single-junction a-Si1-xOx:H cells with mixed-doping window layers achieved superior open-circuit voltage (Voc), fill factor (FF), and quantum efficiency (QE) compared to cells doped solely with B2H6 or TMB. These enhancements were attributed to improved interface quality between the window and absorber layers. The findings highlight the advantages of a mixed-doping approach, which optimizes optical and electrical properties, resulting in more efficient and stable thin-film solar cells. This work provides a pathway for developing high-performance and cost-effective photovoltaic devices.

Article Details

How to Cite
Inthisang, S., & Sriprapha, K. (2025). Effect of Dopant Gas Sources on the Properties of Boron Doped p-a-Si1-xOx:H Films and Their Application to a-Si1-xOx:H Thin Film Solar Cells. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 25(6), e0265240. https://doi.org/10.55003/cast.2025.265240
Section
Original Research Articles

References

Calise, F., Fabozzi, S., Vanoli, L., & Vicidomini, M. (2021). A sustainable mobility strategy based on electric vehicles and photovoltaic panels for shopping centers. Sustainable Cities and Society, 70, Article 102891. https://doi.org/10.1016/j.scs.2021.102891

Chen, T.-G., Yu, P., Tsai, Y.-L., Shen, C.-H., Shieh, J.-M., Tsai, M.-A., & Kuo, H.-C. (2012). Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in aSi:H thin film solar cells. Optics Express, 20(10), A412-A417. https://doi.org/10.1364/oe.20.00A412

Daugaard, D. (2020). Emerging new themes in environmental, social and governance investing: a systematic literature review. Accounting and Finance, 60(2), 1501-1530. https://doi.org/10.1111/acfi.12479

Fujikake, S., Ohta, H., Sichanugrist, P., Ohsawa, M., Ichikawa, Y., & Sakai, H. (1994). a-SiO:H films and their application to solar cells. Optoelectronics - Devices and Technologies, 9(3), 379-390.

Ichikawa, Y., Fujikake, S., Ohta, H., Sasaki, T., & Sakai, H. (1991). 12% two-stacked a-Si:H tandem cells with a new p-layer structure. In Proceedings of the 22nd IEEE Photovoltaic Specialists Conference (pp. 1296-1301). IEEE. https://doi.org/10.1109/PVSC.1991.169417

Kim, G., Lim, J. W., Shin, M. & Yun, S. J. (2018). Bifacial color realization for a-Si:H solar cells using transparent multilayered electrodes. Solar Energy, 159, 465-474. https://doi.org/10.1016/j.solener.2017.11.019

Kim, S., Chung, J.-W., Lee, H., Heo, Y. & Lee, H.-M. (2013). Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology. Solar Energy Materials and Solar Cells, 119, 26-35. https://doi.org/10.1016/j.solmat.2013.04.016

Kim, Y. K., Guijt, E., Si, F. T., Santbergen, R., Holovsky, J., Isabella, O., van Swaaij, R. A. C. M. M. & Zeman, M. (2015). Fabrication of double- and triple-junction solar cells with hydrogenated amorphous silicon oxide (a-SiOx:H) top cell. Solar Energy Materials and Solar Cells, 141, 148-153. https://doi.org/10.1016/j.solmat.2015.05.033

Krajangsang, T., Inthisang, S., Hongsingthong, A., Limmanee, A., Sritharathikhun, J., & Sriprapha, K. (2013). Wide-gap p-μc-Si1-xOx:H films and their application to amorphous silicon solar cells. International Journal of Photoenergy, 2013, 1-6. https://doi.org/10.1155/2013/958326

Kumar, P., Kupich, M., Grunsky, D., & Schroeder, B. (2006). Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells. Thin Solid Films, 501(1-2), 260-263. https://doi.org/10.1016/j.tsf.2005.07.151

Lambertz, A., Finger, F., Holländer, B., Rath, J. K., & Schropp, R. E. I. (2012). Boron-doped hydrogenated microcrystalline silicon oxide (μc-SiOx:H) for application in thin-film silicon solar cells. Journal of Non-Crystalline Solids, 358, 1962-1965. https://doi.org/10.1016/j.jnoncrysol.2011.12.047

Lim, W. L., Lee, J. D., Lee, S. H. & Yun, J. S. (2014). Cell performance of a-Si:H translucent solar cells with various buffers utilizing light reflected by a backside mirror. Materials Research Bulletin, 58, 153-156. https://doi.org/10.1016/j.materresbull.2014.03.016

Macías, J., Herrero, R., José, L. S., Núñez, R., & Antón, I. (2024). On the validation of a modelling tool for vehicle integrated PhotoVoltaics: Reflected irradiance in urban environments. Solar Energy Materials and Solar Cells, 277, Article 113060. https://doi.org/10.1016/j.solmat.2024.113060

Matsumoto, Y., Meléndez, F., & Asomoza, R. (2001). Performance of p-type silicon-oxide windows in amorphous silicon solar cell. Solar Energy Materials and Solar Cells, 66(1-4), 163-170. https://doi.org/10.1016/S0927-0248(00)00169-0

Myong, S. Y., Kim, S. S., & Lim, K. S. (2004). Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure. Journal of Applied Physics, 95, 1525-1530. https://doi.org/10.1063/1.1639140

Myong, S. Y., Lee, H. K., Yoon, E., & Lim, K. S. (2002). Highly conductivity boron-doped nanocrystalline silicon-carbide film prepared by low-hydrogen-dilution photo-CVD method using ethylene as a carbon source. Journal of Non-Crystalline Solids, 298(2-3), 131-136. https://doi.org/10.1016/S0022-3093(02)00916-X

Otsubo, S., Saito, M., Morimoto, A., Kumeda, M., & Shimizu, T. (1988). a-Si1-xOx:H films prepared by direct photo-CVD using CO2 gas. Japanese Journal of Applied Physics, 27(11A), Article L1999. https://doi.org/10.1143/JJAP.27.L1999

Sánchez, P., Lorenzo, O., Menéndez, A., Menéndez, J. L., Gomez, D., Pereiro, R., & Fernández, B. (2011). Characterization of doped amorphous silicon thin films through the investigation of dopant elements by glow discharge spectrometry: A correlation of conductivity and bandgap energy measurements. International Journal of Molecular Sciences, 12(4), 2200-2215. https://doi.org/10.3390/ijms12042200

Schüttauf, J.-W., Niesen, B., Löfgren, L., Bonnet-Eymard, M., Stuckelberger, M., Hänni, S., Boccard, M., Bugnon, G., Despeisse, M., Haug, F.-J., Meillaud, F., & Ballif, C. (2015). Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells. Solar Energy Materials and Solar Cells, 133, 163-169. https://doi.org/10.1016/j.solmat.2014.11.006

Shah, A. V. (2010). Thin-film silicon solar cells. EPFL Press. https://doi.org/10.1201/b16327

Sriprapha, K., Sitthiphol, N., Sangkhawong, P., Sangsuwan, V., Limmanee, A., & Sritharathikhun, J. (2011). p-Type hydrogenated silicon oxide thin film deposited near amorphous to microcrystalline phase transition and its application to solar cells. Current Applied Physics, 11(1), S47-S49. https://doi.org/10.1016/j.cap.2010.11.008

Staebler, D. L., & Wronski, C. R. (1977). Reversible conductivity changes in discharge-produced amorphous silicon. Applied Physics Letters, 31(4), 292-294. https://doi.org/10.1063/1.89674

von Blanckenhagen, B., Tonova, D., & Ullmann, J. (2002). Application of the Tauc-Lorentz formulation to the interband absorption of amorphous semiconductors. Applied Optics, 41(16), 3137-3142. https://doi.org/10.1364/AO.41.003137

Wijewardane, S., & Kazmerski, L. L. (2023). Inventions, innovations, and new technologies: Flexible and lightweight thin-film solar PV based on CIGS, CdTe, and a-Si:H. Solar Compass, 7, Article 100053. https://doi.org/10.1016/j.solcom.2023.100053

Yadav, R. K., Pawar, P. S., Kim, Y. T., Sharma, I., Patil, P. R., Bisht, N., & Heo, J. (2023). Investigation of hybrid SnSe/SnS bilayer absorber for application in solar cells. Solar Energy, 266, Article 112174. https://doi.org/10.1016/j.solener.2023.112174