Effect of Dopant Gas Sources on the Properties of Boron Doped p-a-Si1-xOx:H Films and Their Application to a-Si1-xOx:H Thin Film Solar Cells
Main Article Content
Abstract
Hydrogenated amorphous silicon (a-Si:H) thin-film solar cells offer low-cost production and flexibility, making them promising for renewable energy applications. This study examined the effects of the dopant gases diborane (B2H6), trimethyl boron (TMB), and a B2H6 + TMB combination on the optical and electrical properties of boron-doped hydrogenated amorphous silicon oxide (p-a-Si1-xOx:H) films for window layers in a-Si:H solar cells. Films were fabricated using very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD), optimizing doping concentrations to balance a high optical bandgap (Eopt) and conductivity. TMB-doped films exhibited higher Eopt and better optical properties, while the B2H6 + TMB combination improved conductivity and overall performance. Single-junction a-Si1-xOx:H cells with mixed-doping window layers achieved superior open-circuit voltage (Voc), fill factor (FF), and quantum efficiency (QE) compared to cells doped solely with B2H6 or TMB. These enhancements were attributed to improved interface quality between the window and absorber layers. The findings highlight the advantages of a mixed-doping approach, which optimizes optical and electrical properties, resulting in more efficient and stable thin-film solar cells. This work provides a pathway for developing high-performance and cost-effective photovoltaic devices.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Calise, F., Fabozzi, S., Vanoli, L., & Vicidomini, M. (2021). A sustainable mobility strategy based on electric vehicles and photovoltaic panels for shopping centers. Sustainable Cities and Society, 70, Article 102891. https://doi.org/10.1016/j.scs.2021.102891
Chen, T.-G., Yu, P., Tsai, Y.-L., Shen, C.-H., Shieh, J.-M., Tsai, M.-A., & Kuo, H.-C. (2012). Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in aSi:H thin film solar cells. Optics Express, 20(10), A412-A417. https://doi.org/10.1364/oe.20.00A412
Daugaard, D. (2020). Emerging new themes in environmental, social and governance investing: a systematic literature review. Accounting and Finance, 60(2), 1501-1530. https://doi.org/10.1111/acfi.12479
Fujikake, S., Ohta, H., Sichanugrist, P., Ohsawa, M., Ichikawa, Y., & Sakai, H. (1994). a-SiO:H films and their application to solar cells. Optoelectronics - Devices and Technologies, 9(3), 379-390.
Ichikawa, Y., Fujikake, S., Ohta, H., Sasaki, T., & Sakai, H. (1991). 12% two-stacked a-Si:H tandem cells with a new p-layer structure. In Proceedings of the 22nd IEEE Photovoltaic Specialists Conference (pp. 1296-1301). IEEE. https://doi.org/10.1109/PVSC.1991.169417
Kim, G., Lim, J. W., Shin, M. & Yun, S. J. (2018). Bifacial color realization for a-Si:H solar cells using transparent multilayered electrodes. Solar Energy, 159, 465-474. https://doi.org/10.1016/j.solener.2017.11.019
Kim, S., Chung, J.-W., Lee, H., Heo, Y. & Lee, H.-M. (2013). Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology. Solar Energy Materials and Solar Cells, 119, 26-35. https://doi.org/10.1016/j.solmat.2013.04.016
Kim, Y. K., Guijt, E., Si, F. T., Santbergen, R., Holovsky, J., Isabella, O., van Swaaij, R. A. C. M. M. & Zeman, M. (2015). Fabrication of double- and triple-junction solar cells with hydrogenated amorphous silicon oxide (a-SiOx:H) top cell. Solar Energy Materials and Solar Cells, 141, 148-153. https://doi.org/10.1016/j.solmat.2015.05.033
Krajangsang, T., Inthisang, S., Hongsingthong, A., Limmanee, A., Sritharathikhun, J., & Sriprapha, K. (2013). Wide-gap p-μc-Si1-xOx:H films and their application to amorphous silicon solar cells. International Journal of Photoenergy, 2013, 1-6. https://doi.org/10.1155/2013/958326
Kumar, P., Kupich, M., Grunsky, D., & Schroeder, B. (2006). Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells. Thin Solid Films, 501(1-2), 260-263. https://doi.org/10.1016/j.tsf.2005.07.151
Lambertz, A., Finger, F., Holländer, B., Rath, J. K., & Schropp, R. E. I. (2012). Boron-doped hydrogenated microcrystalline silicon oxide (μc-SiOx:H) for application in thin-film silicon solar cells. Journal of Non-Crystalline Solids, 358, 1962-1965. https://doi.org/10.1016/j.jnoncrysol.2011.12.047
Lim, W. L., Lee, J. D., Lee, S. H. & Yun, J. S. (2014). Cell performance of a-Si:H translucent solar cells with various buffers utilizing light reflected by a backside mirror. Materials Research Bulletin, 58, 153-156. https://doi.org/10.1016/j.materresbull.2014.03.016
Macías, J., Herrero, R., José, L. S., Núñez, R., & Antón, I. (2024). On the validation of a modelling tool for vehicle integrated PhotoVoltaics: Reflected irradiance in urban environments. Solar Energy Materials and Solar Cells, 277, Article 113060. https://doi.org/10.1016/j.solmat.2024.113060
Matsumoto, Y., Meléndez, F., & Asomoza, R. (2001). Performance of p-type silicon-oxide windows in amorphous silicon solar cell. Solar Energy Materials and Solar Cells, 66(1-4), 163-170. https://doi.org/10.1016/S0927-0248(00)00169-0
Myong, S. Y., Kim, S. S., & Lim, K. S. (2004). Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure. Journal of Applied Physics, 95, 1525-1530. https://doi.org/10.1063/1.1639140
Myong, S. Y., Lee, H. K., Yoon, E., & Lim, K. S. (2002). Highly conductivity boron-doped nanocrystalline silicon-carbide film prepared by low-hydrogen-dilution photo-CVD method using ethylene as a carbon source. Journal of Non-Crystalline Solids, 298(2-3), 131-136. https://doi.org/10.1016/S0022-3093(02)00916-X
Otsubo, S., Saito, M., Morimoto, A., Kumeda, M., & Shimizu, T. (1988). a-Si1-xOx:H films prepared by direct photo-CVD using CO2 gas. Japanese Journal of Applied Physics, 27(11A), Article L1999. https://doi.org/10.1143/JJAP.27.L1999
Sánchez, P., Lorenzo, O., Menéndez, A., Menéndez, J. L., Gomez, D., Pereiro, R., & Fernández, B. (2011). Characterization of doped amorphous silicon thin films through the investigation of dopant elements by glow discharge spectrometry: A correlation of conductivity and bandgap energy measurements. International Journal of Molecular Sciences, 12(4), 2200-2215. https://doi.org/10.3390/ijms12042200
Schüttauf, J.-W., Niesen, B., Löfgren, L., Bonnet-Eymard, M., Stuckelberger, M., Hänni, S., Boccard, M., Bugnon, G., Despeisse, M., Haug, F.-J., Meillaud, F., & Ballif, C. (2015). Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells. Solar Energy Materials and Solar Cells, 133, 163-169. https://doi.org/10.1016/j.solmat.2014.11.006
Shah, A. V. (2010). Thin-film silicon solar cells. EPFL Press. https://doi.org/10.1201/b16327
Sriprapha, K., Sitthiphol, N., Sangkhawong, P., Sangsuwan, V., Limmanee, A., & Sritharathikhun, J. (2011). p-Type hydrogenated silicon oxide thin film deposited near amorphous to microcrystalline phase transition and its application to solar cells. Current Applied Physics, 11(1), S47-S49. https://doi.org/10.1016/j.cap.2010.11.008
Staebler, D. L., & Wronski, C. R. (1977). Reversible conductivity changes in discharge-produced amorphous silicon. Applied Physics Letters, 31(4), 292-294. https://doi.org/10.1063/1.89674
von Blanckenhagen, B., Tonova, D., & Ullmann, J. (2002). Application of the Tauc-Lorentz formulation to the interband absorption of amorphous semiconductors. Applied Optics, 41(16), 3137-3142. https://doi.org/10.1364/AO.41.003137
Wijewardane, S., & Kazmerski, L. L. (2023). Inventions, innovations, and new technologies: Flexible and lightweight thin-film solar PV based on CIGS, CdTe, and a-Si:H. Solar Compass, 7, Article 100053. https://doi.org/10.1016/j.solcom.2023.100053
Yadav, R. K., Pawar, P. S., Kim, Y. T., Sharma, I., Patil, P. R., Bisht, N., & Heo, J. (2023). Investigation of hybrid SnSe/SnS bilayer absorber for application in solar cells. Solar Energy, 266, Article 112174. https://doi.org/10.1016/j.solener.2023.112174