Flesh Quality of Nile Tilapia (Oreochromis niloticus) Cultured in Biofloc System with Different Dietary Protein Levels
Main Article Content
Abstract
The effects of dietary protein levels on flesh quality of Nile tilapia cultured in a biofloc system were investigated after an 8-week feeding trial. The experimental design was a completely randomized design (CRD) with 3 treatments and 3 replicates. The fish (initial average weight of 30.70±0.70 g) were fed diets with 32% (32%CP-BFT), 30% (30%CP-BFT) and 28% (28%CP-BFT) crude protein and raised in a biofloc system. The results showed that biofloc particles in the 32%CP-BFT treatment had a higher protein content than those in other treatments, which corresponded with protein accumulation in the whole body of fish (p≤0.05). However, no differences were found in the protein accumulated in fillets (p>0.05). The fillet color analysis showed that the 32%CP-BFT treatment had the lowest yellowness values, but no significant differences were found between treatments for brightness, redness, and whiteness index (p>0.05). Water holding capacity showed no significant differences in drip loss, thawing loss, and grilling loss (p>0.05). However, the 32%CP-BFT treatment showed the highest boiling loss (p≤0.05). Texture analysis showed that the 32%CP-BFT treatment had the highest springiness and hardness (p≤0.05), while the pH values showed no significant differences (p>0.05). The analysis of thiobarbituric acid reactive substances (TBARS) in the fillets stored under chilling conditions showed increasing TBARS values with longer storage duration, with no significant differences among treatments (p>0.05).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
AOAC. (2000). Official methods of analysis. Vol. II. (17th ed.). The Association of Official Analytical Chemists.
Aramli, M. S., Kalbassi, M. R., & Nazari, R. M. (2013). Study of sperm concentration, seminal plasma composition and their physiological correlation in the Persian sturgeon Acipenser persicus. Reproduction in Domestic Animals, 48(6), 1013-1018. https://doi.org/10.1111/rda.12207
Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4), 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025
Avnimelech, Y., & Kochba, M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287, 163-168. https://doi.org/10.1016/j.aquaculture.2008.10.009
Badii, F., & Howell, N. K. (2002). Changes in the texture and structure of cod and haddock fillets during frozen storage. Food Hydrocolloids, 16(4), 313-319. https://doi.org/10.1016/S0268-005X(01)00104-7
Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tokmechi, A., Farah, K. R., & Jalali, A. S. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquaculture Research, 49(1), 393-403. https://doi.org/10.1111/are.13469
Becerril-Cortes, D., Monroy-Dosta, M., Emerenciano, M., Castro-Mejia, G., Sofia, B., Bermudez, S., & Correa, G. V. (2018). Effect on nutritional composition of produced bioflocs with different carbon sources (molasses, coffee waste and rice bran) in biofloc system. International Journal of Fisheries and Aquatic Studies, 6(2), 541-547. https://doi.org/10.2478/aoas-2022-0025
Biscalchin-Grÿschek, S. F., Oetterer, M., & Gallo, C. R. (2003). Characterization and frozen storage stability of minced Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.). Journal of Aquatic Food Product Technology, 12(3), 57-69. https://doi.org/10.1300/J030v12n03_06
Burford, A. M., Thompson, P., McIntosh, R. P., Bauman, R. H., & Pearson, D. C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232(1-4), 525-537. https://doi.org/10.1016/S0044-8486(03)00541-6
Cheng, J.-H., Sun, D.-W., Han, Z., &. Zeng, X.-A. (2014). Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review. Comprehensive Reviews in Food Science and Food Safety, 13(1), 52-61. https://doi.org/10.1111/1541-4337.12043
Choi, Y. M., & Kim, B. C. (2009). Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livestock Science, 122(2-3), 105-118. https://doi.org/10.1016/j.livsci.2008.08.015
Crab, R., Chielens, B., Wille, M., Bossier, P., & Verstraete, W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4), 559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x
Einen, O., Guerin, T., Fjaera, S. O., & Skjervold, P. O. (2002). Freezing of pre-rigor fillets of Atlantic salmon. Aquaculture, 212(1-4), 129-140. https://doi.org/10.1016/S0044-8486(01)00874-2
Ekasari, J., Angela, D., Waluyo, S. H., Bachtiar, T., Surawidjaja, E. H., Bossier, P., & De Schryver, P. (2014). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426(2), 105-111. https://doi.org/10.1016/j.aquaculture.2014.01.023
Ekasari, J., Crab, R., & Verstraete, W. (2010). Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity. HAYATI Journal of Biosciences, 17(3), 125-130. https://doi.org/10.4308/hjb.17.3.125
Ekasari, J., Rivandi, D. R., Firdausi, A. P., Surawidjaja, E. H., Zairin, M., Bossier, P.,
& Schryver, P.D. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441(2), 72-77. https://doi.org/10.1016/j.aquaculture.2015.02.019
Fan, H., Luo, Y., Yin, X., Bao Y., & Feng L. (2014). Biogenic amine and quality changes in lightly salt- and sugar-salted black carp (Mylopharyngodon piceus) fillets stored at 4ºC. Food Chemistry, 159(15), 20-28. https://doi.org/10.1016/j.foodchem.2014.02.158
Goes, E. S. R, Lara, J. A. F., Gasparino, E., Del Vesco, A. P., Goes, M. D., Filho, L. A., & Ribeiro, R. P. (2015). Pre-Slaughter stress affects ryanodine receptor protein gene expression and the water-holding capacity in fillets of the Nile Tilapia. PLoS ONE, 10(6), Article e0129145. https://doi.org/10.1371/journal.pone.0129145
Gurr, M. I. (1992). Dietary lipids and coronary heart disease: old evidence, new perspectives. Nutrition Research Review, 31(3), 195-243. https://doi.org/10.1016/0163-7827(92)90009-8
Hultmann, L., Phu, T. M., Tobiassen, T., Aas-Hansen, O., & Rustad, T. (2012). Effects of pre-slaughter stress on proteolytic enzyme activities and muscle quality of farmed Atlantic cod (Gadus morhua). Food Chemistry, 134(3), 1399-1408. https://doi.org/10.1016/j.foodchem.2012.03.038
Jaturasitha, S., Srikanchai, T., Kreuzer, M., & Wicke, M. (2008). Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island red). Poultry Science, 87(1), 160-169. https://doi.org/10.3382/ps.2006-00398
Kayan, A., Boontan, I., Jaturssitha, S., Wicke, M., & Kreuzer, M. (2015). Effect of slaughter weight on meat quality of Nile Tilapia (Oreochromis niloticus). Agriculture and Agricultural Science Procedia, 5, 159-163. https://doi.org/10.1016/j.aaspro.2015.08.024
Kayim, M., & Can, E. (2010). The pH and total fat values of fish meat in different iced storage period. Asian Journal of Animal and Veterinary Advances, 5(5), 346-348. https://doi.org/10.3923/ajava.2010.346.348
Khanjani, M. H., Alizadeh, M., Mohammadi, M., & Aliabad, H. S. (2021). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: Growth performance, carcass analysis, digestive and hepatic enzyme activity. Iranian Journal of Fisheries Sciences, 20(2), 490-513. https://doi.org/10.22092/ijfs.2021.123873
Khanjani, M. H., Sajjadi, M., Alizadeh, M., & Sourinejad, I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian Journal of Fisheries Sciences, 15(4), 1465-1484. https://doi.org/10.22092/IJFS.2018.114623
Khanjani, M. H., Sharifinia, M., & Hajirezaee, S. (2020). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Annals of Animal Science, 20(4), 1471-1486. https://doi.org/10.2478/aoas-2020-0036
Kobayashi, Y., & Park, J. W. (2017). Biochemical and physical characterizations of fish protein isolate and surimi prepared from fresh and frozen whole fish. LWT-Food Science and Technology, 77, 200-207. https://doi.org/10.1016/j.lwt.2016.11.027
Kumari, S., Harikrishna, V., Surasani, V. K. R., Balange, A. K., & Rani, A. M. B. (2021). Growth, biochemical indices and carcass quality of red tilapia reared in zero water discharge based biofloc system in various salinities using inland saline ground water. Aquaculture, 540, Article 736730. https://doi.org/10.1016/j.aquaculture.2021.736730
Lima, E. C. R., Souza, R. L., Girao, P. J. M., Braga, I. F. M., & Correia, E. S. (2018). Culture of Nile tilapia in a biofloc system with different sources of carbon. Revista Ciência Agronômica, 49(3), 458-466. https://doi.org/10.5935/1806-6690.20180052
Lopez-Eliıas, J., Moreno-Arias, A., Miranda-Baeza, A., Martinez-Cordova, L., Rivas-Vega, M., & Marquez-Rios, E. (2015). Proximate composition of bioflocs in culture systems containing hybrid red tilapia fed diets with varying levels of vegetable meal inclusion. North American Journal of Aquaculture, 77(1), 102-109. https://doi.org/10.1080/15222055.2014.963767
Matos, E., Gonçalves, A., Nunes, M. L., Dinis, M. T., & Dias, J. (2010). Effect of harvesting stress and slaughter conditions on selected flesh quality criteria of gilthead seabream (Sparus aurata). Aquaculture, 305(1-4), 66-72. https://doi.org/10.1016/j.aquaculture.2010.04.020
McCarthy, J. J., & Esser, K. A. (2010). Anabolic and catabolic pathways regulating skeletal muscle mass. Current Opinion in Clinical Nutrition and Metabolic Care, 13(3), 230-235. https://doi.org/10.1097/MCO.0b013e32833781b5
Minabi, K., Sourinejad, I., Alizadeh, M., Rajabzadeh Ghatrami, E., & Khanjani, M.H. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquaculture International, 28(5), 1883-1898. https://doi.org/10.1007/s10499-020-00564-7
Morzel, M., & De Vis, H.V. (2003). Effects of the slaughter method on the quality of raw and smoked eels (Anguilla anguilla L.). Aquaculture Research, 34(1), 1-11. https://doi.org/10.1046/j.1365-2109.2003.00754.x
Narimbi, J., Mazumder, D., & Sammut, J. (2018). Stable isotope analysis to quantify contributions of supplementary feed in Nile Tilapia Oreochromis niloticus (GIFT strain) aquaculture. Aquaculture Research, 49(5), 1866-1874. https://doi.org/10.1111/are.13642
NurSyahirah, S., & Rozzamri, A. (2022). Effects of frying on fish, fish products and frying oil – a review. Food Research, 6(5), 14-32. https://doi.org/10.26656/fr.2017.6(5).608
Qing, R., Hao, S., Smorodina, E., Jin, D., Zalevsky, A., & Zhang, S. (2022). Protein design: from the aspect of water solubility and stability. Chemical Reviews Journal, 122(18), 14085-14179. https://doi.org/10.1021/acs.chemrev.1c00757
Rawdkuen, S., Jongjareonrak, A., Phatcharat, S., & Benjakul, S. (2010). Assessment of protein changes in farmed giant catfish (Pangasianodon gigas) muscles during refrigerated storage. International Journal of Food Science and Technology, 45(5), 985-994. https://doi.org/10.1111/j.1365-2621.2010.02217.x
Robb, D. H. F., & Kestin, S.C. (2002). Methods used to kill fish: field observations and literature reviewed. Animal Welfare, 11(3), 269-282. https://doi.org/10.1017/S0962728600024854
Samocha, T. M., Patnaik, S., Speed, M., Ali, A. M., Burger, J. M., Almeida, R. V., & Brock, D. L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184-191. https://doi.org/10.1016/j.aquaeng.2006.10.004
Schryver, P. D., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277(3-4), 125-137. https://doi.org/10.1016/j.aquaculture.2008.02.019
Sumer, G., & Oz, F. (2023). The effect of direct and indirect barbecue cooking on polycyclic aromatic hydrocarbon formation and beef quality. Foods, 12(7), Article 1374. https://doi.org/10.3390/foods12071374
Tian, S., Chen, P., Wu, Z., Wu, Y., Yuan, J., Huang, D., Mai, K., & Zhang, W. (2024). Dietary cottonseed protein concentrate affected the flesh texture and myofiber characteristics of large yellow croaker Larimichthys crocea. Aquaculture, 592(2), Article 741176. https://doi.org/10.1016/j.aquaculture.2024.741176
Wang, C., Pan, L., Zhang, K., Xu, W., Zhao, D., & Mei, L. (2015). Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks. Aquaculture Research, 47(10), 1-12. https://doi.org/10.1111/are.12784
Wei, Z., Ma, J., Pan, X., Mu, H., Li, J., Shentu, J., Zhang, W., & Mai, K. (2016). Dietary hydroxyproline improves the growth and muscle quality of large yellow croaker Larimichthys crocea. Aquaculture, 464(3), 497-504. https://doi.org/10.1016/j.aquaculture.2016.07.015
Xu, W.-J., Pan, L.-Q., Zhao, D.-H., & Huang, J. (2012). Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350-353, 147-153. https://doi.org/10.1016/j.aquaculture.2012.04.003
Zhou P., & Xie, J. (2021). Effect of different thawing methods on the quality of mackerel (Pneumatophorus japonicus). Food Science and Biotechnology, 30(9),1213-1223. https://doi.org/10.1007/s10068-021-00966-0
Zhuang, J., Abdullah, Wang, Y., Shen, W., Zheng, W., Liu, T., Wang, J., & Feng, F. (2022). Evaluating dynamic effects of dietary glycerol monolaurate on the productive performance and flesh quality of large yellow croaker (Larimichthys crocea). Food Chemistry, 387, Article 132833. https://doi.org/10.1016/j.foodchem.2022.132833