Estimation of Combining Ability in Field Maize Inbred Lines for Adaptive and Yield Component Traits Using Half-Diallel Crosses Under Well-Watered and Water-Stressed Conditions

Main Article Content

Kamolrat Boonmawat
Darush Struss
Pattama Hannok

Abstract

Climate variability and prolonged droughts pose significant threats to field maize production, emphasizing the urgent need for drought-tolerant varieties to reduce yield losses and enhance resilience. This study aimed to identify superior maize hybrids by evaluating the general combining ability (GCA) and specific combining ability (SCA) of inbred lines. Genetic diversity analysis using 523 SNP markers identified 240 markers with a minor allele frequency (MAF) ≥ 0.05. The results categorized inbred lines into six clusters based on genetic distance, which ranged from 0.01 to 0.46. Ten lines from each cluster were selected for half-diallel crosses, generating 45 F1 hybrids. Field trials under well-watered and water-stressed conditions were conducted during the 2022 and 2023 dry seasons using a split-plot in randomized complete block design with two replications. Combining ability analysis showed that GCA, reflecting additive genetic effects, significantly influenced adaptive traits such as anthesis-silking interval (ASI), stay-green (SG), SPAD (chlorophyll content), and plant height (PH) traits associated with photosynthetic efficiency, reproductive success, and drought tolerance. Key parental lines, including Ki58, Nei582046, Kei1508, and Kei1618, were identified as strong donors for drought-adaptive traits, while DTMA192 was a significant contributor to yield component traits. Promising crosses, DTMA192 x Kei1618 and Ki58 x DTMA192, exhibited substantial SCA effects for adaptive and yield component traits, supporting a dual breeding approach. Integration of drought-adaptive trait selection based on parental GCA effects and hybrid performance on SCA provides an effective strategy to develop resilient, high-yielding maize hybrids, which are critical for regions facing water scarcity and climate change. 

Article Details

How to Cite
Boonmawat, K., Struss, . D. ., & Hannok, P. . (2025). Estimation of Combining Ability in Field Maize Inbred Lines for Adaptive and Yield Component Traits Using Half-Diallel Crosses Under Well-Watered and Water-Stressed Conditions. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0265444. https://doi.org/10.55003/cast.2025.265444
Section
Original Research Articles

References

Adu, G. B., Badu-Apraku, B., Akromah, R., Garcia-Oliveira, A. L., Awuku, F. J., & Gedil, M. (2019). Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PloS ONE, 14(4), Article e0214810. https://doi.org/10.1371/journal.pone.0214810

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science, 19(1), 52-61. https://doi.org/10.1016/j.tplants.2013.09.008

Bänziger, M., Edmeades, G. O., Beck, D., & Bellon, M. (2000). Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. CIMMYT.

Barker, T., Campos, H., Cooper, M., Dolan, D., Edmeades, G., Habben, J., Schussler, J., Wright, D., & Zinselmeier, C. (2005). Improving drought tolerance in maize. In J. Janick (Ed.). Plant breeding reviews. Vol. 25 (pp. 173-253). John Wiley & Sons. https://doi.org/10.1002/9780470650301.ch7

Bernardo, R. (2020). Breeding for quantitative traits in plants. (3rd ed.) Stemma Press.

Blum, A. (2011). Plant breeding for water-limited environments. Springer.

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. https://doi.org/10.1093/bioinformatics/btm308

Briggs, F. N., & Knowles, P. F. (1967). Introduction to plant breeding. Reinhold Publishing Corporation.

Campos, H., Cooper, M., Habben, J. E., Edmeades, G. O., & Schussler, J. R. (2004). Improving drought tolerance in maize: a view from industry. Field Crops Research, 90(1), 19-34. https://doi.org/10.1016/j.fcr.2004.07.003

Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. https://doi.org/10.1038/nclimate2153

Chapman, S. C., Cooper, M., Podlich, D. W., & Hammer, G. L. (2000). Evaluating plant breeding strategies by simulating gene action and genotype × environment effects. Agronomy Journal, 95(1), 99-113. https://doi.org/10.2134/agronj2003.9900

Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30(3), 239-264. https://doi.org/10.1071/FP02076

Cooper, M., van Eeuwijk, F. A., Hammer, G. L., Podlich, D. W., & Messina, C. (2009). Modeling QTL for complex traits: detection and context for plant breeding. Current Opinion in Plant Biology, 12(2), 231-240. https://doi.org/10.1016/j.pbi.2009.01.006

Dube, S. P., Sibiya, J., & Kutu, F. (2023). Genetic diversity and population structure of maize inbred lines using phenotypic traits and single nucleotide polymorphism (SNP) markers. Scientific Reports, 13(1), Article 17851. https://doi.org/10.1038/s41598-023-44961-3

Duvick, D. N. (1999). Heterosis: feeding people and protecting natural resources. In J. G. Coors, & S. Pandey (Eds.). Genetics and exploitation of heterosis in crops. (pp. 19-29). American Society of Agronomy.

Doyle, J. J. J. L. (1987). Genomic plant DNA preparation from fresh tissue-the CTAB method. Phytochemical Bulletin, 19(11), 11.

Edmeades, G. O., Bänziger, M., Eling, A., Chapman, S. C., & Ribaut, J.-M. (1997). Recent advances in breeding for drought tolerance in maize. In M. J. Kropff, P. S. Teng, P. K. Aggarwal, J. Bouma, B. A. M. Bouman, J. W. Jones, & H. H. Laar (Eds.). Applications of systems approaches at the field level. Systems approaches for sustainable agricultural development Vol. 6 (pp. 63-78). Springer. https://doi.org/10.1007/978-94-017-0754-1_5

Fan, X., Bi, Y., Zhang, Y., Jeffers, D., Yin, X., & Kang, M. (2018). Improving breeding efficiency of a hybrid maize breeding program using a three heterotic‐group classification. Agronomy Journal, 110(4), 1209-1216. https://doi.org/10.2134/agronj2017.05.0290

Fukai, S., & Cooper, M. (1995). Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research, 40(2), 67-86. https://doi.org/10.1016/0378-4290(94)00096-U

Hallauer, A. R., Carena, M. J., & Miranda Filho, J. B. (2010). Quantitative genetics in maize breeding. Springer.

Hammer, G. L., Chapman, S., van Oosterom, E., & Podlich, D. W. (2005). Trait physiology and crop modeling as a framework to link phenotypic complexity to underlying genetic systems. Australian Journal of Agricultural Research, 56(9), 947-960.

He, Z., Zhong, J., Sun, X., Wang, B., Terzaghi, W., & Dai, M. (2018). The maize ABA receptors ZmPYL8, 9, and 12 facilitate plant drought resistance. Frontiers in Plant Science, 9, Article 422. https://doi.org/10.3389/fpls.2018.00422

Johnson, R. (2004). Marker-assisted selection. Plant Breeding Reviews, 24(1), 293-310.

Josia, C., Mashingaidze, K., Amelework, A. B., Kondwakwenda, A., Musvosvi, C., & Sibiya, J. (2021). SNP-based assessment of genetic purity and diversity in maize hybrid breeding. PloS ONE, 16(8), Article e0249505. https://doi.org/10.1371/journal.pone.0249505

Khan, S. U., Zheng, Y., Chachar, Z., Zhang, X., Zhou, G., Zong, N., Leng, P., & Zhao, J. (2022). Dissection of maize drought tolerance at the flowering stage using genome-wide association studies. Genes, 13(4), Article 564. https://doi.org/10.3390/genes13040564

Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686-1697. https://doi.org/10.1104/pp.112.208298

Melchinger, A. E. (1999). Genetic diversity and heterosis. In J. G. Coors, & S. Pandey (Eds.). Genetics and exploitation of heterosis in crops (pp. 99-118). ASA-CSSA-SSSA. https://doi.org/10.2134/1999.geneticsandexploitation

Menkir, A., Dieng, I., Gedil, M., Mengesha, W., Oyekunle, M., Riberio, P. F., Adu, G. B., Yacoubou, A.-M., Coulibaly, M., Bankole, F. A., Derera, J., Bossey, B., Unachukwu, N., Ilesanmi, Y., & Meseka, S. (2024). Approaches and progress in breeding drought-tolerant maize hybrids for tropical lowlands in west and central Africa. The Plant Genome, 17(2), Article e20437. https://doi.org/10.1002/tpg2.20437

Powell, J. E., Visscher, P. M., & Goddard, M. E. 2010. Reconciling the analysis of IBD and IBS in complex trait studies. Nature Reviews Genetics, 11, 800-805. https://doi.org/10.1038/nrg2865

R Core Team. (2025). R: A language and environment for statistical computing. https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf

Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C., Rana, M., & Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific reports, 10(1), Article 2944. https://doi.org/10.1038/s41598-020-59689-7

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sedhom, Y. S. A., Rabie, H. A., Awaad, H. A., Alomran, M. M., ALshamrani, S. M., Mansour, E., & Ali, M. M. A. (2024). Genetic potential of newly developed maize hybrids under different water-availability conditions in an arid environment. Life, 14(4), Article 453. https://doi.org/10.3390/life14040453

Semagn, K., Babu, R., Hearne, S., & Olsen, M. (2014). Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 33, 1-14. https://doi.org/10.1007/s11032-013-9917-x

Setter, T. L., Flannigan, B. A., & Melkonian, J. (2001). Loss of kernel set due to water deficit and shade in maize: Carbohydrate supplies, abscisic acid, and cytokinins. Crop Science, 41(5), 1530-1540. https://doi.org/10.2135/cropsci2001.4151530x

Sheoran, S., Kaur, Y., Kumar, S., Shukla, S., Rakshit, S., & Kumar, R. (2022). Recent advances for drought stress tolerance in maize (Zea mays L.): Present status and future prospects. Frontiers in Plant Science, 13, Article 872566. https://doi.org/10.3389/fpls.2022.872566

Shikha, M., Kanika, A., Rao, A. R., Mallikarjuna, M. G., Gupta, H. S., & Nepolean, T. (2017). Genomic selection for drought tolerance using genome-wide SNPs in maize. Frontiers in Plant Science, 8, Article 550. https://doi.org/10.3389/fpls.2017.00550

Sprague, G. F., & Tatum, L. A. (1942). General vs. specific combining ability in single crosses of corn. Agronomy Journal, 34(10), 923-932. https://doi.org/10.2134/agronj1942.00021962003400100008x

Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance depending on the environmental scenario. Journal of Experimental Botany, 63(1), 25-31. https://doi.org/10.1093/jxb/err269

Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822. https://doi.org/10.1126/science.1183700

Van Gioi, H., Mallikarjuna, M. G., Shikha, M., Pooja, B., Jha, S. K., Dash, P. K., Basappa, A. M., Gadag, R. N., Rao, A. R., & Nepolean, T. (2017). Variable level of dominance of candidate genes controlling drought functional traits in maize hybrids. Frontiers in Plant Science, 8, Article 940. https://doi.org/10.3389/fpls.2017.00940

Xiao, Y., Jiang, S., Cheng, Q., Wang, X., Yan, J., Zhang, R., Qiao, F., Ma, C., Luo, J., Li, W., Liu, H., Yang, W., Song, W., Meng, Y., Warburton, M. L., Zhao, J., Wang, X., & Yan, J. (2021). The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 22(1), Article 148. https://doi.org/10.1186/s13059-021-02370-7

Yu, K., Wang, H., Liu, X., Xu, C., Li, Z., Xu, X., Liu, J., Wang, Z., & Xu, Y. (2020). Large-scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources. Frontiers in Plant Science, 11, Article 660. https://doi.org/10.3389/fpls.2020.00660