Ceratocystis fimbriata Causing Wilt and Sudden Death on Acacia mangium in South Sumatera

Main Article Content

Rahmat Pratama
Ahmad Muslim
Nurhayati Damiri
Harman Hamidson
Suwandi
Rizki Putri Amelia

Abstract

A survey of the incidence of lethal wilt disease in Acacia mangium plantations was conducted in three locations in South Sumatra, Indonesia:  Ogan Komering Ilir (OKI) Regency, Ogan Ilir (OI) Regency, and Palembang City. Wilt disease in Acacia plants is highly concerning, with a mortality rate reaching 100%. Isolates were obtained from sapwood that exhibited dark spots, and six isolates were identified: CAW30658 (OKI), CAW30820, CAW30819, CAW31211, CAW30656 (OI), and CAW80912 (Palembang City). The initial symptom of wilting in Acacia leaves is characterized by leaf wilting, with color changes from green to yellow, followed by leaf drying. In the final stage, the tree dries out and dies. Symptoms in the sapwood include the formation of brown lesions that gradually turn black with elongated streak patterns resembling claw marks. These lesions also spread extensively into the heartwood, obstructing the plant's vascular tissues. Typically, infected trees emit a sweet, fruity odor from the exudate of fermenting lesions. This study aimed to identify the pathogen causing wilt in infected A. mangium using morphological characteristics and comparing DNA sequences of the Internal Transcribed Spacer (ITS) region and β-tubulin 1 (bt1) sequences, as well as its pathogenicity toward other host plants. The isolated fungus exhibited morphological characteristics similar to the wilt pathogen Ceratocystis sp., with isolates producing rounded ascomatal bases with long-necked ostiolar hyphae. Phylogenetic analysis confirmed C. fimbriata, differentiating it from all other Ceratocystis species. The six isolates showed a DNA similarity level of 98%. Koch's postulates test on four-month-old A. mangium confirmed that C. fimbriata was the causative agent of the wilt disease. The lowest pathogenicity test was on Artocarpus heterophyllus, with a rate of 6.11%, while the strongest attack was on Annona muricata, with a rate of 8.96% among other hosts.

Article Details

How to Cite
Pratama, R., Muslim, A., Damiri, N., Hamidson, H., Suwandi, & Amelia, R. P. (2025). Ceratocystis fimbriata Causing Wilt and Sudden Death on Acacia mangium in South Sumatera. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 26(1), e0265486. https://doi.org/10.55003/cast.2025.265486
Section
Original Research Articles

References

Adhikari, D., & Rangra, N. K. (2023). Antimicrobial activities of Acacia genus: A review. Asian Pacific Journal of Tropical Biomedicine, 13(2), 45-59. https://doi.org/10.4103/2221-1691.369609

Amadou, I., Soulé, M., & Salé, A. (2020). An overview on the importance of Acacia nilotica (L.) Willd. Ex Del.: A review. Asian Journal of Research in Agriculture and Forestry, 5(3), 12-18. https://doi.org/10.9734/ajraf/2020/v5i330085

Baccelli, I., Lombardi, L., Luti, S., Bernardi, R., Picciarelli, P., Scala, A., & Pazzagli, L. (2014). Cerato-plantain induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signaling genes, and camalexin biosynthesis. PLoS ONE, 9(6), Article e100959. https://doi.org/10.1371/journal.pone.0100959

Barnes, I., Abdul, R. M. R, A., Fourie, A., Japarudin, Y., & Wingfield, M. J. (2023). Ceratocystis manginecans and not C. fimbriata a threat to propagated Acacia spp. in Sabah, Malaysia. Journal of Tropical Forest Science, 35, 16-26.

Brawner, J., Japarudin, Y., Lapammu, M., Rauf, R., Boden, D., & Wingfield, M. J. (2015). Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. Southern Forests, 77(1), 83-90. https://doi.org/10.2989/20702620.2015.1007412

Cardillo, E., Acedo, A., & Abad, E. (2018). Topographic effects on dispersal patterns of Phytophthora cinnamomi at a stand scale in a Spanish heathland. PLoS ONE, 13(3), Article e0195060. https://doi.org/10.1371/journal.pone.0195060

Chauhan, J., Saini, I., Kumar, T., & Kaushik, P. (2020). Integrated pest management for Acacia: Prospects and challenges. https://doi.org/10.20944/preprints202006.0164.v1

Chi, N. M., Thu, P. Q., Hinh, T. X., & Dell, B. (2019). Management of Ceratocystis manginecans in plantations of Acacia through optimal pruning and site selection. Australasian Plant Pathology, 48(4), 343-350. https://doi.org/10.1007/s13313-019-00635-1

Deidda, A., Buffa, F., Linaldeddu, B. T., Pinna, C., Scanu, B., Deiana, V., Satta, A., Franceschini, A., & Floris, I. (2016). Emerging pests and diseases threaten Eucalyptus camaldulensis plantations in Sardinia, Italy. iForest, 9(6), 883-891. https://doi.org/10.3832/ifor1805-009

Evans, C. D., Williamson, J. M., Kacaribu, F., Irawan, D., Suardiwerianto, Y., Hidayat, M. F., Laurén, A., & Page, S. E. (2019). Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma, 338, 410-421. https://doi.org/10.1016/j.geoderma.2018.12.028

Fernandes, F. M., de Queiroz, M. V., da Silva, L. L., Azevedo, D. M. Q., Badel, J. L., & Alfenas, A. C. (2022). Chromosomal polymorphism of the Ceratocystis fimbriata species complex in Brazil. Fungal genetics and biology, 162, Article 103728. https://doi.org/10.1016/j.fgb.2022.103728

Francis, A., Beadle, C., Puspitasari, D., Irianto, R., Agustini, L., Rimbawanto, A., Gafur, A., Hardiyanto, E., Junarto, Hidyati, N., Tjahjono, B., Mardai, U., Glen, M., & Mohammed, C. (2014). Disease progression in plantations of Acacia mangium affected by red root rot (Ganoderma philippii). Forest Pathology, 44(6), 447-459. https://doi.org/10.1111/efp.12141

Ginawan, G., Adhya, I., & Karyaningsih, I. (2019). Identifikasi serangan hama pada tanaman akasia (Acacia mangium) Di IUPHHK-HTI PT. Hutan rindang banua provinsi Kalimantan Selatan. In Prosiding Seminar Nasional Konservasi Untuk Kesejahteraan Masyarakat I (pp. 257-265). Fakultas Kehutanan, Universitas Kuningan.

González-Domínguez, E., Fedele, G., Salinari, F., & Rossi, V. (2020). A general model for the effect of crop management on plant disease epidemics at different scales of complexity. Agronomy, 10(4), Article 462. https://doi.org/10.3390/agronomy10040462

Hardiyanto, E. B., & Nambiar, S. E. K. (2014). Productivity of successive rotations of Acacia mangium plantations in Sumatra, Indonesia: Impacts of harvest and inter-rotation site management. New Forests, 45(4), 557-575. https://doi.org/10.1007/s11056-014-9418-8

Harwood, C. E., Nambiar, E. K. S. (2014). Productivity of Acacia and Eucalypt plantations in Southeast Asia. 2. Trends and variations. International Forestry Review, 16(2), 249-260. https://doi.org/10.1505/146554814811724766

Hughes, M. A., Roy, K., Harrington, T. C., Brill, E., & Keith, L. M. (2023). Ceratocystis lukuohia-infested ambrosia beetle frass as inoculum for Ceratocystis wilt of ʻōhiʻa (Metrosideros polymorpha). Plant Pathology, 72(2), 232-245. https://doi.org/10.1111/ppa.13653

Jeger, M. J., & Termorshuizen, A. J. (2017). The theory of inoculum: The relationship between disease incidence and inoculum density and dynamics of soilborne plant pathogens. In A. Gamliel, & J. Katan (Eds.). Soil solarization: Theory and practice (pp. 3-13). The American Phytopathological Society. https://doi.org/10.1094/9780890544198.002

Karlinasari, L., Adzkia, U., Fredisa, Y., Rahman, M. M., Nugroho, N., & Siregar, I. Z. (2021). Tree form morphometrics of Agathis dammara and Acacia mangium in the IPB’s Dramaga Landscape Campus, Bogor. IOP Conference Series: Earth and Environmental Science, 918(1), Article 012015. https://doi.org/10.1088/1755-1315/918/1/012015

Koutika, L.-S., & Richardson, D. M. (2019). Acacia mangium Willd: benefits and threats associated with its increasing use around the world. Forest Ecosystems, 6, Article 2. https://doi.org/10.1186/s40663-019-0159-1

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolutionary, 33(7), 1870-1874. https://doi.org/10.1093/molbev/msw054

Li, Z., Wu, S., Liu, Y., You, F., Hall, M., & Huang, L. (2024). Natural nodulation and nitrogen fixation of Acacia Auriculiformis grown in technosol eco-engineered from Fe ore tailings. Plant and Soil, 497(1-2), 25-41. https://doi.org/10.1007/s11104-023-06342-7

Lin, Z., Yuan, T., Zhou, L., Cheng, S., Qu, X., Lu, P., & Feng, Q. (2021). Impact factors of the accumulation, migration, and spread of antibiotic resistance in the environment. Environmental Geochemistry and Health, 43(5), 1741-1758. https://doi.org/10.1007/s10653-020-00759-0

Mitra, S., Zamharir, M. G., Marcone, C., Ravi, M., & Rao, G. P. (2023). Update on phytoplasma diseases associated with urban trees, desert trees, and bamboos in Asia. In A. K. Tiwari, K. Caglayan, T. X. Hoat, A. A. Subhi, N. Nejat, & G. Reddy (Eds.), Phytoplasma diseases of major crops, trees, and weeds. Vol. 2. (pp. 283-308). Academic Press. https://doi.org/10.1016/B978-0-323-91897-8.00017-4

Mueller, G. M., Bills, G. F., & Foster, M. S. (2004). Biodiversity of fungi. Inventory and monitoring methods. Elsevier. https://doi.org/10.1016/B978-0-12-509551-8.X5000-4

Muslim, A., Pratama, R., Suwandi, S., & Hamidson, H. (2022). Diseases severity, genetic variation, and pathogenicity of Ceratocystis Wilt on Lansium domesticum in South Sumatra, Indonesia. The Plant Pathology Journal, 38(2), 131-145. https://doi.org/10.5423/PPJ.OA.12.2021.0182

Muslim, A., Suwandi, S., Pratama, R., & Gunawan, B. (2025). Ceratocystis fimbriata causing canker and wilt disease on West Indian mahogany trees in Indonesia. Journal of Plant Diseases and Protection, 132, Article 12. https://doi.org/10.1007/s41348-024-00995-x

Mutiar, S., Kasim, A., Emriadi, & Asben, A. (2020). Karakteristikkulit kayu Acacia auriculiformis A. Cunn. ex Benth. DAN Acacia mangium Willd. dari hutan tanaman industrI [Bark characteristics of Acacia auriculiformis A. Cunn. ex Benth. and Acacia mangium Willd. From industrial plantation forest]. Jurnal Penelitian Kehutanan Wallacea, 9(1), 43-49. https://doi.org/10.18330/jwallacea.2020.vol9iss1pp43-49

Nair, P. K. R., Kumar, B. M., & Nair, V. D. (2021). Multipurpose trees (MPTs) and other agroforestry species. In P. K. R. Nair, B. M. Kumar, & V. D. Nair (Eds.). An introduction to agroforestry (2nd ed., pp. 281-351). https://doi.org/10.1007/978-3-030-75358-0

Nasution, A., Glen, M., Beadle, C., & Mohammed, C. (2019). Ceratocystis wilt and canker–a disease that compromises the growing of commercial Acacia-based plantations in the tropics. Australian Forestry, 82(sup1), 80-93. https://doi.org/10.1080/00049158.2019.1595347

Nazarov, P. A., Baleev, D. N., Ivanova, M. I., Sokolova, L. M., & Karakozova, M. V. (2020). Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae, 12(3), 46-59. https://doi.org/10.32607/actanaturae.11026

Nkuekam, G. K., Wingfield, M. J., & Roux, J. (2013). Ceratocystis species, including two new taxa, from Eucalyptus trees in South Africa. Australasian Plant Pathology, 42, 283-311. https://doi.org/10.1007/s13313-012-0192-9

Ojwang’, A. M. E., Ruiz, T., Bhattacharyya, S., Chatterjee, S., Ojiambo, P. S., & Gent, D. H. (2021). A general framework for Spatio-temporal modeling of epidemics with multiple epicenters: Application to an aerially dispersed plant pathogen. Frontiers in Applied Mathematics and Statistics, 7, Article 721352. https://doi.org/10.3389/fams.2021.721352

Oliveira, L. S. S., Guimarães, L. M. S., Ferreira, M. A., Nunes, A. S., Pimenta, L. V. A., & Alfenas, A. C. (2015). Aggressiveness, cultural characteristics and genetic variation of Ceratocystis fimbriata on Eucalyptus spp. Forest Pathology, 45(6), 505-514. https://doi.org/10.1111/efp.12200

Pratama, R., Mefiyanto, E., Sidik, M., Febrian, M. T., Syagitha, S. A., Mayasari, J. W., Asyifa, T. S., & Merti, Y. (2023b). Identifikasi penyakit layu dan mematikan Ceratocystis pada Eukaliptus di Sumatera Selatan. [Wilting and deadly disease of Ceratocystis on Eucalyptus plants in South Sumatra]. Seminar Nasional Lahan Suboptimal, 11(1), 252-261.

Pratama, R., Muslim, A., & Suwandi, S. (2023a). First report of new wilt disease on Mangifera indica caused by Ceratocystis fimbriata in Indonesia. BIOVALENTIA: Biological Research Journal, 9(1), 36-40. https://doi.org/10.24233/biov.9.1.2023.377

Pratama, R., Muslim, A., Suwandi, S., Damiri, N., & Soleha, S. (2021a). First report of characterisation and pathogenicity of bullet wood (Mimusops elengi) sudden decline disease caused by Ceratocystis manginecans in Indonesia. Biodiversitas Journal of Biological Diversity, 22(5), 2636-2645. https://doi.org/10.13057/biodiv/d220522

Pratama, R., Muslim, A., Suwandi, S., Damiri, N., & Soleha, S. (2021b). Jackfruit (Artocarpus heterophyllus), a new host plant of Ceratocystis wilt in South Sumatra, Indonesia. Australasian Plant Disease Notes, 16(1), Article 24. https://doi.org/10.1007/s13314-021-00435-x

Pratama, R., Muslim, A., Suwandi, S., & Shk, S. (2023c). First report of Ceratocystis fimbriata causing wilt disease of soursop in South Sumatra, Indonesia. Biodiversitas, 24(12), 6711-6721. https://doi.org/10.13057/biodiv/d241233

Pratama, R., Suwandi, S., Muslim, A., & Mulawarman. (2025). Diversity of Ceratocystis fimbriata causing canker and wilt disease on Cupressus sempervirens (Italian cypress) in Indonesia. Biodiversitas, 26(1), 278-287. https://doi.org/10.13057/biodiv/d260128

Rahman, A. U., Shakoor, A., Zaib, G., Mumtaz, A., Ihtesham, Y., & Napar, A. A. (2014). Comparative antimicrobial activity of Acacia nilotica L. leaves extracts against pathogenic bacteria and fungi. Journal of Medicinal Plants Research, 8(29), 975-982. https://doi.org/10.5897/jmpr2012.354

Saharan, G. S., Mehta, N., & Meena, P. D. (2016). Alternaria diseases of Crucifers: Biology, ecology and disease management. Springer Singapore. https://doi.org/10.1007/978-981-10-0021-8

Silva, E., Fernandes, S., Bacelar, E., & Sampaio, A. (2016). Antimicrobial activity of aqueous, ethanolic, and methanolic leaf extracts from Acacia spp. and Eucalyptus nicholii. African Journal of Traditional, Complementary, and Alternative Medicines, 13(6), 130-134. https://doi.org/10.21010/ajtcam.v13i6.18

Smith, D. F. Q., & Casadevall, A. (2022). On the relationship between pathogenic potential and infective inoculum. PLoS Pathogens, 18(6), article e1010484. https://doi.org/10.1371/journal.ppat.1010484

Souza, B. R., de Moraes, M. D. A., Braboza, F. S., Coneglian, A., & Sette, C. R. Jr. (2021). The presence of bark in Acacia mangium wood improves ITS energetic potential. Floresta, 51(1), 54-60. https://doi.org/10.5380/rf.v51i1.67299

Sulistyono, E., Kkadan, S., Maretha, M. V., Tavares, W. D. S., Sirait, B. A., Hanjelina Br Sinulingga, N. G., Tarigan, M., & Duran, A. (2020). First report, morphological and molecular identification of Spodoptera species (Lepidoptera, Noctuidae) on Acacia crassicarpa (Fabaceae) in Sumatra, Indonesia. Journal of the Lepidopterists’ Society, 74(3), 176-182. https://doi.org/10.18473/lepi.74i3.a4

Suwandi, S., Irsan, C., Hamidson, H., Umayah, A., & Asriyani, K. D. (2021). Identification and characterization of Ceratocystis fimbriata causing lethal wilt on the Lansium tree in Indonesia. Plant Pathology Journal, 37(2), 124-136. https://doi.org/10.5423/PPJ.OA.08.2020.0147

Syazwan, S. A., Mohd-Farid, A., Wan-Muhd-azrul, W.-A., Syahmi, H. M., Zaki, A. M., Ong, S. P., & Mohamed, R. (2021). Survey, identification, and pathogenicity of Ceratocystis fimbriata complex associated with wilt disease on Acacia mangium in Malaysia. Forests, 12(12), Article 1782. https://doi.org/10.3390/f12121782

Tarigan, M., Roux, J., Van Wyk, M., Tjahjono, B., & Wingfield, M. J. (2011). A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. South African Journal of Botany, 77(2), 292-304. https://doi.org/10.1016/j.sajb.2010.08.006

Valdetaro, D. C. O. F., Oliveira, L. S. S., Guimarães, L. M. S., Harrington, T. C., Ferreira, M. A., Freitas, R. G., & Alfenas, A. C. (2015). Genetic variation, morphology and pathogenicity of Ceratocystis fimbriata on Hevea brasiliensis in Brazil. Tropical Plant Pathology, 40(3), 184-192. https://doi.org/10.1007/s40858-015-0036-6