Development of Quantitative PCR Method for Quantifying Streptococcus thermophilus Growth During Batch Culture
Main Article Content
Abstract
Streptococcus thermophilus is a thermophilic lactic acid bacterium that is commonly used in food fermentation. However, quantifying bacterial populations using conventional culture-dependent assays is laborious. The genome-based method has been recognized as an alternative rapid method. In this study, we developed a method to use a specific gene of S. thermophilus, the glucokinase gene (GlcK), by quantitative PCR (qPCR). A 139-bp PCR product was successfully cloned and used to generate a DNA standard curve by plotting the threshold cycle (Cq) versus log DNA concentration of plasmid DNA, with an amplification efficiency of 97.2%. Coefficient of variation was calculated by considering both Cq and bacterial cells enumerated by plate counts, which indicated a log CFU/mL (1.69-6.56) and log DNA copies (2.07-6.03). This linear relationship revealed a quantitative curve (R2 = 0.989) with a detection limit of range from 2.07 to 6.03 log copies per reaction. In terms of efficiency and repeatability, the relative standard deviations (RSDs) were in the range of 92-110% and 0.01%, respectively. Lastly, we used the developed qPCR method to determine the growth curves of bacterial cells and the specific growth rate (m) during batch culture for 24 h. The established method facilitated the determination of specific growth rates, showing a specific growth rate of 0.57 h-1 with lactose supplementation and 0.30 h-1 in the absence of lactose. Hence, qPCR-based methods facilitated reliable quantification of S. thermophilus during fermentation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Adams, P. S. (2006). Data analysis and reporting. In M.T. Dorak (Ed.). Real-time PCR (pp. 39-62). Taylor & Francis. https://doi.org/10.4324/9780203967317
Alexandraki, V., Kazou, M., Blom, J., Pot, B., Papadimitriou, K., & Tsakalidou, E. (2019). Comparative genomics of Streptococcus thermophilus support important traits concerning the evolution, biology and technological properties of the species. Frontiers in Microbiology, 10, Article 2916. https://doi.org/10.3389/fmicb.2019.02916
Allen, R. C., & Rutan, S. C. (2011). Investigation of interpolation techniques for the reconstruction of the first dimension of comprehensive two-dimensional liquid chromatography-diode array detector data. Analytica Chimica Acta, 705(1-2), 253-260. https://doi.org/10.1016/j.aca.2011.06.022
Barer, M. R. (2015). Bacterial growth, culturability and viability. In Y.-W. Tang, D. Liu, I. Poxton, & J. Schwartzman (Eds.). Molecular medical microbiology. Vol. 1. (2nd Ed., pp. 181-199). Academic Press. https://doi.org/10.1016/B978-0-12-397169-2.00010-X
Broeders, S., Huber, I., Grohmann, L., Berben, G., Taverniers, I., Mazzara, M., Roosens, N., & Morisset, D. (2014). Guidelines for validation of qualitative real-time PCR methods. Trends in Food Science and Technology, 37(2), 115-126. https://doi.org/10.1016/j.tifs.2014.03.008
Cáceres, A. J., Quiñones, W., Gualdrón, M., Cordeiro, A., Avilán, L., Michels, P. A. M., & Concepción, J. L. (2007). Molecular and biochemical characterization of novel glucokinases from Trypanosoma cruzi and Leishmania spp. Molecular and Biochemical Parasitology, 156(2), 235-245. https://doi.org/10.1016/j.molbiopara.2007.08.007
Catone, S., Iannantuono, S., Genovese, D., Von Hunolstein, C., & Franciosa, G. (2024). Viability-PCR for the selective detection of Lactobacillus acidophilus and Bifidobacterium bifidum in live bacteria-containing products. Frontiers in Microbiology, 15, Article 1400529. https://doi.org/10.3389/fmicb.2024.1400529
Chen, S., Gong, P., Zhang, J., Shan, Y., Han, X., & Zhang, L. (2021). Use of qPCR for the analysis of population heterogeneity and dynamics during Lactobacillus delbrueckii spp. bulgaricus batch culture. Artificial Cells, Nanomedicine and Biotechnology, 49(1), 1-10. https://doi.org/10.1080/21691401.2020.1860074
Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS ONE, 9(5), Article e97269. https://doi.org/10.1371/journal.pone.0097269
Cleusix, V., Lacroix, C., Dasen, G., Leo, M., & Le Blay, G. (2010). Comparative study of a new quantitative real-time PCR targeting the xylulose-5-phosphate/fructose-6-phosphate phosphoketolase bifidobacterial gene (xfp) in faecal samples with two fluorescence in situ hybridization methods. Journal of Applied Microbiology, 108(1), 181-193. https://doi.org/10.1111/j.1365-2672.2009.04408.x
Cotto, A., Jessica, K. L., Mota, L. C., & Son, A. (2015). Quantitative polymerase chain reaction for microbial growth kinetics of mixed culture system. Journal of Microbiology and Biotechnology, 25(11), 1928-1935. https://doi.org/10.4014/jmb.1503.03090
Dan, T., Hu, H., Tian, J., He, B., Tai, J., & He, Y. (2023). Influence of different ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on fermentation characteristics of yogurt. Molecules, 28(5), Article 2123. https://doi.org/10.3390/molecules28052123
Davis, C. (2014). Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. Journal of Microbiological Methods, 103, 9-17. https://doi.org/10.1016/j.mimet.2014.04.012
Elizaquível, P., Aznar, R., & Sánchez, G. (2013). Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. Journal of Applied Microbiology, 116(1), 1-13. https://doi.org/10.1111/jam.12365
Fan, X., Li, X., Zhang, T., Xu, J., Shi, Z., Wu, Z., Wu, J., Pan, D., & Du, L. (2021). A novel qPCR method for the detection of lactic acid bacteria in fermented milk. Foods, 10(12), Article 3066. https://doi.org/10.3390/foods10123066
Fittipaldi, M., Nocker, A., & Codony, F. (2012). Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. Journal of Microbiological Methods, 91(2), 276-289. htps://doi.org/ 10.1016/j.mimet.2012.08.007
Higuchi, R., Dollinger, G., Walsh, P. S., & Griffith, R. (1992). Simultaneous amplification and detection of specific DNA sequences. Nature Biotechnology, 10(4), 413-417. https://doi.org/10.1038/nbt0492-413
Kawasaki, S., Horikoshi, N., Okada, Y., Takeshita, K., Sameshima, T., & Kawamoto, S. (2005). Multiplex PCR for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7 in meat samples. Journal of Food Protection, 68(3), 551-556. https://doi.org/10.4315/0362-028x-68.3.551
Kim, D. W. (2001). Real time quantitative PCR. Experimental and Molecular Medicine, 33(1 Suppl), 101-109.
Lee, C., Kim, J., Shin, S. G., & Hwang, S. (2006). Absolute and relative qPCR quantification of plasmid copy number in Escherichia coli. Journal of Biotechnology, 123, 273-280.
Li, D., Peng, J., Kwok, L.-Y., Zhang, W., & Sun, T. (2022). Metabolomic analysis of Streptococcus thermophilus S10-fermented milk. LWT, 161, Article 113368. https://doi.org/10.1016/j.lwt.2022.113368
Li, F., Liu, J., Maldonado-Gómez, M. X., Frese, S. A., Gänzle, M. G., & Walter, J. (2024). Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples. Microbiome, 12(1), Article 168. https://doi.org/10.1186/s40168-024-01881-2
Monod, J. (1949). The growth of bacterial cultures. Annual Reviews in Microbiology, 3, 371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103
Oliveira, C. S., Ordaz, A., Alba, J., Alves, M., Ferreira, E. C., & Thalasso, F. (2009). Determination of kinetic and stoichiometric parameters of Pseudomonas putida F1 by chemostat and pulse respirometry. Chemical Product and Process Modeling, 4(2). https://doi.org/10.2202/1934-2659.1304
Pancza, B., Szathmáry. M., Gyurján, I., Bánkuti, B., Tudós, Z., Szathmary, S., Stipkovits, L., Sipos-Kozma, Z., Ásványi, B., Varga, L., Szenthe, K., & Bánáti, F. (2021). A rapid and efficient DNA isolation method for qPCR-based detection of pathogenic and spoilage bacteria in milk. Food Control, 130, Article 108236. https://doi.org/10.1016/j.foodcont.2021.108236
Rasmussen, R. (2001). Quantification on the lightcycler. In S. Meuer, C. Wittwer, K. I. Nakagawara (Eds.). Rapid cycle real-time PCR (pp. 21-34). Springer. https://doi.org/10.1007/978-3-642-59524-0_3
Roux, E., Nicolas, A., Valence, F., Siekaniec, G., Chuat, V., Nicolas, J., Le Loir, Y., & Guédon, E. (2022). The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics, 23(1), Article 210. https://doi.org/10.1186/s12864-022-08459-y
Sambrook, J., & Russell, D. (2001). Molecular cloning: A laboratory manual (3rd Ed.). Cold Spring Harbor Laboratory Press.
Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 61(1), Article 1600240. https://doi.org/10.1002/mnfr.201600240
Sheu, S.-J., Hwang, W.-Z., Chiang, Y.-C., Lin, W.-H., Chen, H.-C., & Tsen, H.-Y. (2010). Use of Tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of Bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods. Journal of Food Science, 75(8), M521-M527. https://doi.org/10.1111/j.1750-3841.2010.01816.x
Shi, Z., Li, X., Fan, X., Xu, J., Liu, Q., Wu, Z., & Pan, D. (2022). PMA-qPCR method for the selective quantitation of viable lactic acid bacteria in fermented milk. Frontiers in Microbiology, 13, Article 984506. https://doi.org/10.3389/fmicb.2022.984506
Toley, B. J., Covelli, I., Belousov, Y., Ramachandran, S., Kline, E., Scarr, N., Vermeulen, N., Mahoney, W., Lutz, B. R., & Yager, P. (2015).
Isothermal strand displacement amplification (iSDA): A rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst, 140(22), 7540-7549. https://doi.org/10.1039/c5an01632k
Whelan, J. A., Russell, N. B., & Whelan, M. A. (2003). A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods. 278(1-2), 261-269. https://doi.org/10.1016/S0022-1759(03)00223-0
Zhao, L., Zhang, D., Liu, Y., Zhang, Y.-N., Meng, D.-Q., Xu, Q., Zhong, J., Jiang, Q.-Y., Zhao, Y., & Wang, S.-J. (2022). Quantitative PCR assays for the strain-specific identification and enumeration of probiotic strain Lacticaseibacillus rhamnosus X253. Foods, 11(15), Article 2282. https://doi.org/10.3390/foods11152282
Zhao, R., Chen, Z., Liang, J., Dou, J., Guo, F., Xu, Z., & Wang, T. (2023) Advances in genetic tools and their application in Streptococcus thermophilus. Foods, 12(16), Article 3119. https://doi.org/10.3390/foods12163119