Optimizing Primary Isolation of Recombinant HPV L1 Protein type 58 from Hansenula polymorpha

Main Article Content

Natsima Kopitak
Panchaphon Phathano
Thunyarat Pongtharangkul
Chuenchit Boonchird
Theppanya Charoenrat
Thantawat Theeranan

Abstract

Human Papillomavirus (HPV) infection is a primary cause of cervical cancer. While HPV types 16 and 18 are globally recognized, HPV 58 is the predominant genotype contributing to cervical cancer incidence in Thailand. Effective prevention is offered by virus-like particle (VLP) vaccines from recombinant L1 capsid protein. However, the high cost of imported vaccines limits their affordability in Thailand, highlighting the need for domestic production to enhance accessibility and self-sustainability. Despite efficient HPV L1 protein production in large-scale bioreactors, a scalable and robust purification process remains challenging, particularly when the protein is expressed in Hansenula polymorpha. This study focused on optimizing the initial isolation of recombinant HPV58 L1 protein from Hansenula polymorpha. Cell disruption was optimized using a high-pressure homogenizer at 1000 bars. The highest L1 protein yield (76.16 µg/mL) was achieved after five homogenization passes. Agitation of the homogenate for 6 h further enhanced the L1 protein yield to 165.67 µg/mL by solubilizing protein trapped within organelles or cell debris. Protein precipitation for L1 isolation was compared using ammonium sulfate (40-50% saturation), PEG6000 (10-25% v/v), and PEG8000 (10-25% v/v). Precipitation with 45% saturated ammonium sulfate at 4°C yielded the highest specific L1 protein (45.9 µg/mL) with fewer impurities. The L1 protein recovery rate ranged from 44% to 57%. This primary isolation provides a crude L1 protein extract for further downstream purification using methods such as chromatography. The purified L1 protein can self-assemble into VLPs and can be formulated into an HPV vaccine. This work supports scalable downstream processes for industrial HPV vaccine production.

Article Details

How to Cite
Kopitak, N., Phathano, P., Pongtharangkul, T., Boonchird, C., Charoenrat, T., & Theeranan, T. (2025). Optimizing Primary Isolation of Recombinant HPV L1 Protein type 58 from Hansenula polymorpha. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0265704. https://doi.org/10.55003/cast.2025.265704
Section
Original Research Articles

References

Aghajani, K., Asadollahi, A., Taghizadeh, T., Rahmati, F., Dehghani, M., & Mirhassani, R. (2024). Strain-specific differences in purification and VLP formation for a quadrivalent recombinant HPV vaccine. Biochemical Engineering Journal, 209, Article 109379. https://doi.org/10.1016/j.bej.2024.109379

Ault, K. A. (2007). Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. The Lancet, 369(9576), 1861-1868. https://doi.org/10.1016/S0140-6736(07)60852-6

Boontawon, T. (2017). Expression of the L1 major capsid protein of human papillomavirus type 52 and 58 [unpublished Master thesis]. Mahidol University.

Braaten, K. P., & Laufer, M. R. (2008). Human Papillomavirus (HPV), HPV-Related Disease, and the HPV Vaccine. Reviews in Obstetrics and Gynecology, 1(1), 2-10.

Brachelente, S., Galli, A., & Cervelli, T. (2023). Yeast and virus-like particles: A perfect or imperfect couple? Applied Microbiology 3(3), 805-825. https://doi.org/10.3390/applmicrobiol3030056

Bruni, L., Albero, G., Serrano, B., Mena, M., Collado, J. J., Gómez, D., Muñoz, J., Bosch, F. X., & de Sanjosé, S. (2023). Human papillomavirus and related diseases. report in the world. https://hpvcentre.net/statistics/reports/XWX.pdf

Chairunnisa, S., Mustopa, A. Z., Bela, B., Arifah, R. K., Umami, R. N., Firdaus, M. E. R., Ekawati, N., Irawan, H., Irawan, S., Nurfatwa, M., Hertati, A., Swasthikawati, S., Novianti, E., Kusumawati, A., & Darusman, H. S. (2025). Expression, purification, and immunogenicity study of human papillomavirus type 52 virus-like particles produced in Hansenula polymorpha. Biologicals, 90, Article 101831. https://doi.org/10.1016/j.biologicals.2025.101831

Ekpeni, L. E. N., Benyounis, K. Y., Nkem-Ekpeni, F. F., Stokes, J., & Olabi, A. G. (2015). Underlying factors to consider in improving energy yield from biomass source through yeast use on high-pressure homogenizer (hph). Energy, 81, 74-83. https://doi.org/10.1016/j.energy.2014.11.038

Firdaus, M. E. R., Mustopa, A. Z., Ekawati, N., Chairunnisa, S., Arifah, R. K., Hertati, A., Irawan, S., Prastyowati, A., Kusumawati, A., & Nurfatwa, M. (2023). Optimization, characterization, comparison of self-assembly VLP of capsid protein L1 in yeast and reverse vaccinology design against human papillomavirus type 52. Journal of Genetic Engineering and Biotechnology, 21(1), Article 68. https://doi.org/10.1186/s43141-023-00514-9

Giuseppin, M. L. F., van Eijk, H. M. J., Hellendoorn, M., & van Almkerk, J. W. (1987). Cell wall strength of Hansenula polymorpha in continuous cultures in relation to the recovery of methanol oxidase (MOX). Applied Microbiology and Biotechnology, 27(1), 31-36. https://doi.org/10.1007/BF00257250

Huang, Y., Bi, J., Zhang, Y., Zhou, W., Li, Y., Zhao, L., & Su, Z. (2007). A highly efficient integrated chromatographic procedure for the purification of recombinant hepatitis B surface antigen from Hansenula polymorpha. Protein Expression and Purification, 56(2), 301-310. https://doi.org/10.1016/j.pep.2007.08.009

Jiang, Z., Tong, G., Cai, B., Xu, Y., & Lou, J. (2011). Purification and immunogenicity study of human papillomavirus 58 virus-like particles expressed in Pichia pastoris. Protein Expression and Purification, 80(2), 203-210. https://doi.org/10.1016/j.pep.2011.07.009

Kamolratanakul, S., & Pitisuttithum, P. (2021). Human papillomavirus vaccine efficacy and effectiveness against cancer. Vaccines, 9(12), Article 1413. https://doi.org/10.3390/vaccines9121413

Kee, G. S. (2009). A rational approach to the development of future generation processes for lipoprotein VLP vaccine candidates [Ph.D. thesis, University College London]. https://discovery.ucl.ac.uk/id/eprint/18768/1/18768.pdf

Kee, G. S., Jin, J., Balasundaram, B., Bracewell, D. G., Pujar, N. S., & Titchener-Hooker, N. J. (2010). Exploiting the intracellular compartmentalization characteristics of the S. cerevisiae host cell for enhancing primary purification of lipid-envelope virus-like particles. Biotechnology Progress, 26(1), 26-33. https://doi.org/10.1002/btpr.307

Kietpeerakool, C., Kleebkaow, P., & Srisomboon, J. (2015). Human papillomavirus genotype distribution among thai women with high-grade cervical intraepithelial lesions and invasive cervical cancer: a literature review. Asian Pacific Journal of Cancer Prevention, 16(13), 5153-5158.

Kim, H. J., Lim, S. J., Kim, J. Y., Kim, S. Y., & Kim, H. J. (2009). A method for removing contaminating protein during purification of human papillomavirus type 18 L1 protein from Saccharomyces cerevisiae. Archives of Pharmacal Research, 32(12), 1759-1766. https://doi.org/10.1007/s12272-009-2214-x

Kohl, T. O., & Ascoli, C. A. (2017). Immunometric double-antibody sandwich enzyme-linked immunosorbent assay. Cold Spring Harbor Protocols, 2017(6), Article pdb.prot093724. https://doi.org/10.1101/pdb.prot093724

Kwag, H.-L., Kim, H. J., Chang, D. Y., & Kim, H.-J. (2012). The production and immunogenicity of human papillomavirus type 58 virus-like particles produced in Saccharomyces cerevisiae. Journal of Microbiology, 50(5), 813-820. https://doi.org/10.1007/s12275-012-2292-1

Liu, C., Yao, Y., Yang, X., Bai, H., Huang, W., Xia, Y., & Ma, Y. (2015). Production of recombinant human papillomavirus type 52 L1 protein in Hansenula polymorpha formed virus-like particles. Journal of Microbiology and Biotechnology, 25(6), 936-940. https://doi.org/10.4014/jmb.1412.12027

Lünsdorf, H., Gurramkonda, C., Adnan, A., Khanna, N., & Rinas, U. (2011). Virus-like particle production with yeast: ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the Hepatitis B surface antigen. Microbial Cell Factories, 10(1), Article 48. https://doi.org/10.1186/1475-2859-10-48

Manfrão-Netto, C., H. C., Gomes, A. M. V., & Parachin, N. S. (2019). Advances in using Hansenula polymorpha as chassis for recombinant protein production. Frontiers in Bioengineering and Biotechnology, 7, Article 94. https://doi.org/10.3389/fbioe.2019.00094

Movahed, F., Darzi, S., Mahdavi, P., Salih Mahdi, M., Qutaiba B. Allela, O., Naji Sameer, H., Adil, M., Zarkhah, H., Yasamineh, S., & Gholizadeh, O. (2024). The potential use of therapeutics and prophylactic mRNA vaccines in human papillomavirus (HPV). Virology Journal, 21(1), Article 124. https://doi.org/10.1186/S12985-024-02397-9

Palefsky, J. M., Giuliano, A. R., Goldstone, S., Moreira, E. D. Jr., Aranda, C., Jessen, H., Hillman, R., Ferris, D., Coutlee, F., Stoler, M. H., Marshall, J. B., Radley, D., Vuocolo, S., Haupt, R. M., Guris, D., & Garner, E. I. O. (2011). HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. The New England Journal of Medicine, 365(17), 1576-1585. https://doi.org/10.1056/NEJMoa1010971

Park, M. A., Kim, H. J., & Kim, H. J. (2008). Optimum conditions for production and purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae. Protein Expression and Purification, 59(1), 175-181. https://doi.org/10.1016/j.pep.2008.01.021

Phansri, T., Boonmark, K., & Ngamkham, J. (2022). Retrospective study of human papilloma virus infection in Thailand: A Systematic Review. Thai Cancer Journal, 42(1), 10-29.

Rosmeita, C. N., Budiarti, S., Mustopa, A. Z., Novianti, E., Swasthikawati, S., Chairunnisa, S., Hertati, A., Nurfatwa, M., Ekawati, N., & Hasan, N. (2023). Expression, purification, and characterization of self-assembly virus-like particles of capsid protein L1 HPV 52 in Pichia pastoris GS115. Journal of Genetic Engineering and Biotechnology, 21(1), Article 126. https://doi.org/10.1186/s43141-023-00571-0

Shao, S., Ortega-Rivera, O. A., Ray, S., Pokorski, J. K., & Steinmetz, N. F. (2021). A scalable manufacturing approach to single dose vaccination against HPV. Vaccines, 9(1), Article 66. https://doi.org/10.3390/vaccines9010066

Siriaunkgul, S., Suwiwat, S., Settakorn, J., Khunamornpong, S., Tungsinmunkong, K., Boonthum, A., Chaisuksunt, V., Lekawanvijit, S., Srisomboon, J., & Thorner, P. S. (2008). HPV genotyping in cervical cancer in Northern Thailand: Adapting the linear array HPV assay for use on paraffin-embedded tissue. Gynecologic Oncology, 108(3), 555-560. https://doi.org/10.1016/j.ygyno.2007.11.016

Suthipintawong, C., Siriaunkgul, S., Tungsinmunkong, K., Pientong, C., Ekalaksananan, T., Karalak, A., Kleebkaow, P., Vinyuvat, S., Triratanachat, S., & Khunamornpong, S. (2011). Human papilloma virus prevalence, genotype distribution, and pattern of infection in Thai women. Asian Pacific Journal of Cancer Prevention, 12(4), 853-856.

Tsoka, S., Ciniawskyj, O. C., Thomas, O. R. T., Titchener-Hooker, N. J., & Hoare, M. (2000). Selective flocculation and precipitation for the improvement of virus-like particle recovery from yeast homogenate. Biotechnology Progress, 16(4), 661-667. https://doi.org/10.1021/bp0000407

Vongpunsawad, S., Rhee, C., Nilyanimit, P., Poudyal, N., Jiamsiri, S., Ahn, H. S., Lee, J., Seo, H. W., Klinsupa, W., Park, S., Premsri, N., Namwat, C., Silaporn, P., Excler, J. L., Kim, D. R., Markowitz, L. E., Unger, E. R., Rerks-Ngarm, S., Lynch, J., & Poovorawan, Y. (2023). Prevalence of HPV infection among Thai schoolgirls in the north-eastern provinces in 2018: implications for HPV immunization policy. IJID Regions, 7, 110-115. https://doi.org/10.1016/J.IJREGI.2023.02.011

Wetzel, D., Barbian, A., Jenzelewski, V., Schembecker, G., Merz, J., & Piontek, M. (2019). Bioprocess optimization for purification of chimeric VLP displaying BVDV E2 antigens produced in yeast Hansenula polymorpha. Journal of Biotechnology, 306, 203-212. https://doi.org/10.1016/j.jbiotec.2019.10.008

Wetzel, D., Rolf, T., Suckow, M., Kranz, A., Barbian, A., Chan, J.-A., Leitsch, J., Weniger, M., Jenzelewski, V., Kouskousis, B., Palmer, C., Beeson, J. G., Schembecker, G., Merz, J., & Piontek, M. (2018). Establishment of a yeast-based VLP platform for antigen presentation. Microbial Cell Factories, 17(1), Article 17. https://doi.org/10.1186/s12934-018-0868-0

World Health Organization. (2025, September 10). Sexually transmitted infections (STIs). https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis)

Xu, X., Ren, S., Chen, X., Ge, J., Xu, Z., Huang, H., Sun, H., Gu, Y., Zhou, T., Li, J., & Xu, H. (2014). Generation of hepatitis B virus PreS2-S antigen in Hansenula polymorpha. Virologica Sinica, 29(6), 403-409. https://doi.org/10.1007/s12250-014-3508-9

Yazdani, Z., Rafiei, A., Valadan, R., Ashrafi, H., Pasandi, M. S., & Kardan, M. (2020). Designing a potent L1 protein-based HPV peptide vaccine: A bioinformatics approach. Computational Biology and Chemistry, 85, Article 107209. https://doi.org/10.1016/j.compbiolchem.2020.107209

Yu, Y., Guo, J., Li, D., Liu, Y., Yu, Y., & Wang, L. (2018). Development of a human papillomavirus type 6/11 vaccine candidate for the prevention of Condyloma acuminatum. Vaccine, 36(32), 4927-4934. https://doi.org/10.1016/j.vaccine.2018.06.041

Zahid, M., Lünsdorf, H., & Rinas, U. (2015). Assessing stability and assembly of the hepatitis B surface antigen into virus-like particles during down-stream processing. Vaccine, 33(31), 3739-3745. https://doi.org/10.1016/j.vaccine.2015.05.066

Zhang, T., Lei, J., Yang, H., Xu, K., Wang, R., & Zhang, Z. (2011). An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast, 28(11), 795-798. https://doi.org/10.1002/yea.1905