Seed Morphology and Adverse Effect of Seed Drying on Endemic and Endangered Pinanga arinasae Morphometric and Viability
Main Article Content
Abstract
Pinanga arinasae is an endemic and endangered palm from Bali, Indonesia. Despite its enormous traditional use, ornamental potential, and confined distribution, the study of this species, seed biology, still needs to be explored. This study aimed to describe seed morphology, morphometrics, and viability in fresh and dried P. arinasae seeds. The palm seeds were collected from the Bali Botanic Garden. Seed morphology description, morphometric measurement, and tetrazolium viability assay were conducted on fresh and dried P. arinasae seeds. The results indicated that P. arinasae obovoid shape corresponded with the species original description. The fresh seeds and embryos had length and width of 1.70 and 1.19, and 0.41 and 0.18 cm, respectively. The seed morphology was similar to palm seeds, with reticulating endosperm and a germinative button during early germination. Fresh seeds showed perfect viability on the tetrazolium test. However, the study highlighted the adverse effects of extensive drying on the P. arinasae seed morphometric parameters and zero viability after the tetrazolium test. This study provides baseline data for further research on P. arinasae seed biology to support its conservation and domestication effort.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Ali, M. R., Rahman, M. M., Wadud, M. A., Fahim, A. H. F., & Nahar, M. S. (2018). Effect of seed moisture content and storage container on seed viability and vigor of soybean. Bangladesh Agronomy Journal, 21(1), 131-141. https://doi.org/10.3329/baj.v21i1.39392
Al-Karmadi, A., & Okoh, A. I. (2024). An overview of date (Phoenix dactylifera) fruits as an important global food resource. Foods, 13(7), Article 1024. https://doi.org/10.3390/foods13071024
Almeida, R. D. S., de Araújo, J. K. P., de Araújo, M. P., Moura, L. B., Gomes, A. C., Barbosa, F. M., & de Lacerda, A. V. (2024). Handroanthus impetiginosus biometry of seed and seedling production after different periods of immersion in water. Pesquisa Agropecuária Brasileira, 59, Article e03568. https://doi.org/10.1590/S1678-3921.pab2024.v59.03568
Bastos, L. L., Ferraz, I. D., Junior, M. J., & Pritchard, H. W. (2017). Variation in limits to germination temperature and rates across the seed-seedling transition in the palm Oenocarpus bataua from the Brazilian Amazon. Seed Science and Technology, 45(1), 1-13. https://doi.org/10.15258/sst.2017.45.1.05
Bellot, S., Lu, Y., Antonelli, A., Baker, W. J., Dransfield, J., Forest, F., Kissling, W. D., Leitch, I. J., Lughadha, E. N., Ondo, I., Pironon, S., Walker, B. E., Cámara-Leret, R., & Bachman, S. P. (2022). The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems. Nature Ecology and Evolution, 6(11), 1710-1722. https://doi.org/10.1038/s41559-022-01858-0
Belniaki, A. C., Michelon, T. B., Vieira, E. S. N., & Panobianco, M. (2020). Rapid results of peach palm seed viability: a methodological proposition for the tetrazolium test. Journal of Seed Science, 42, Article e202042034. https://doi.org/10.1590/2317-1545v42234727
Blach-Overgaard, A., Balslev, H., Dransfield, J., Normand, S., & Svenning, J.-C. (2015). Global-change vulnerability of a key plant resource, the African palms. Scientific Reports, 5(1), Article 12611. https://doi.org/10.1038/srep12611
Corbineau, F., Taskiran-Özbingöl, N., & El-Maarouf-Bouteau, H. (2023). Improvement of seed quality by priming: Concept and biological basis. Seeds, 2(1), 101-115. https://doi.org/10.3390/seeds2010008
Couvreur, T. L. P., Jijon, N., Montúfar, R., Morales‐Morales, P. A., Sanín, M. J., Copete, J. C., Lozinguez, A., Pérez, Á. J., & Beech, E. (2024). Diversity and conservation status of palms (Arecaceae) in two hotspots of biodiversity in Colombia and Ecuador. Plants, People, Planet, 6(4), 885-901. https://doi.org/10.1002/ppp3.10506
De Andrade, A. (2001). The effect of moisture content and temperature on the longevity of heart of palm seeds (Euterpe edulis). Seed Science and Technology, 29(1), 171-182.
De Vitis, M., Hay, F. R., Dickie, J. B., Trivedi, C., Choi, J., & Fiegener, R. (2020). Seed storage: maintaining seed viability and vigor for restoration use. Restoration Ecology, 28(S3), S249-S255. https://doi.org/10.1111/rec.13174
del Pozo, D. G., Martín-Gómez, J. J., Tocino, Á., & Cervantes, E. (2020). Seed geometry in the Arecaceae. Horticulturae, 6(4), Article 64. https://doi.org/10.3390/horticulturae6040064
Dennehy, Z., & Cámara-Leret, R. (2019). Quantitative ethnobotany of palms (Arecaceae) in New Guinea. Gardens’ Bulletin Singapore, 71(2), 321-364. https://doi.org/ 10.26492/gbs71(2).2019-03
Fernando, E. S. (1994). New species of Pinanga (Palmae: Arecoideae) from Luzon Island, Philippines. Kew Bulletin, 49(4), 775-784. https://doi.org/10.2307/4118071
Ferreira, S. A. D. N., & Gentil, D. F. D. O. (2017). Seed germination at different stratification temperatures and development of Phytelephas macrocarpa Ruiz & Pavón seedlings. Journal of Seed Science, 39(1), 20-26. https://doi.org/10.1590/2317-1545v39n1166371
Forbis, T. A., Floyd, S. K., & de Queiroz, A. (2002). The evolution of embryo size in angiosperms and other seed plants: Implications for the evolution of seed dormancy. Evolution, 56(11), 2112-2125. https://doi.org/10.1554/0014-3820(2002)056[2112:TEOESI]2.0.CO;2
Gagul, J. N., Tng, D. Y. P., & Crayn, D. M. (2018). Fruit developmental biology and endosperm rumination in Elaeocarpus ruminatus (Elaeocarpaceae), and its taxonomic significance. Australian Systematic Botany, 31(6), 409-419. https://doi.org/10.1071/SB18010
Hay, F. R., Rezaei, S., Wolkis, D., & McGill, C. (2023). Determination and control of seed moisture. Seed Science and Technology, 51(2), 267-285. https://doi.org/10.15258/sst.2023.51.2.11
Kuswantoro, F., & Oktavia, G. A. E. (2019). Studi tipe perkecambahan dan pertumbuhan anakan Pinanga arinasae Witono dan Euchresta horsfieldii (Lesch.) Benn. Untuk mendukung upaya konservasinya. Buletin Kebun Raya, 22(2), 105-116.
Kuswantoro, F., Lugrayasa, I. N., & Sujarwo, W. (2018). Studi ekologi kuantitatif hutan pilan sebagai dasar pengembangan Kebun Raya Gianyar. [Qualitative ecological study of Pilan forest as a baseline for development of Gianyar Botanic Garden]. Jurnal Ilmu Kehutanan, 12(2), 184-195. https://doi.org/10.22146/jik.40147
Lan, Q., Xia, K., Wang, X., Liu, J., Zhao, J., & Tan, Y. (2014). Seed storage behaviour of 101 woody species from the tropical rainforest of southern China: A test of the seed-coat ratio–seed mass (SCR–SM) model for determination of desiccation sensitivity. Australian Journal of Botany, 62(4), 305-311. https://doi.org/10.1071/BT14037
Lestari, D. A., Renjana, E., Ningrum, L. W., Rahadiantoro, A., Firdiana, E. R., Trimanto, Mas’udah, S., Hapsari, L., & Latifah, D. (2024). Seed morphometry of selected plant species from Bromo Tengger Semeru National Park, East Java, Indonesia: The significance in identification and dispersal. International Journal of Conservation Science, 15(4), 1855-1870. https://doi.org: 10.36868/IJCS.2024.04.17
Norup, M. V., Dransfield, J., Chase, M. W., Barfod, A. S., Fernando, E. S., & Baker, W. J. (2006). Homoplasious character combinations and generic delimitation: A case study from the Indo‐Pacific arecoid palms (Arecaceae: Areceae). American Journal of Botany, 93(7), 1065-1080.
Oliveira, T. G. S., José, A. C., Ribeiro, L. M., & Faria, J. M. R. (2015). Longevity and germination of Syagrus romanzoffiana (Arecaceae) seeds and its ecological implications. Revista de Biología Tropical, 63(2), 333-340.
Paravar, A., Farahani, S. M., Adetunji, A. E., Oveisi, M., & Piri, R. (2023). Effects of seed moisture content, temperature, and storage period on various physiological and biochemical parameters of Lallemantia iberica Fisch. & C.A. Mey. Acta Physiologiae Plantarum, 45(9), Article 105. https://doi.org/10.1007/s11738-023-03581-0
Perea, R., Fernandes, G. W., & Dirzo, R. (2018). Embryo size as a tolerance trait against seed predation: Contribution of embryo-damaged seeds to plant regeneration. Perspectives in Plant Ecology, Evolution and Systematics, 31, 7-16. https://doi.org/10.1016/j.ppees.2017.12.001
Randi, A., Petoe, P., Kuhnhäuser, B. G., Chai, P. P. K., Bellot, S., & Baker, W. J. (2023). Pinanga subterranea, a new arecoid palm from Borneo that flowers underground. Palms, 67(2), 57-63.
Rizmasari, A. D. L., Wahidah, B. F., & Witono, J. R. (2023). Dynamics of palm collections (Arecaceae) in the Bogor Botanic Garden in periods 1957-2019. Buletin Kebun Raya, 26(3), 116-125.
Rodrigues, S. G., Kikuti, A. L. P., Kikuti, H., & Pereira, C. E. (2024). Moisture content and temperature of storage in peach palm seed conservation. Ciência Rural, 54(3), Article e20220257. https://doi.org/10.1590/0103-8478cr20220257
Salm, R. (2005). Arborescent palm seed morphology and seedling distribution. Brazilian Journal of Biology, 65(4), 711-716. https://doi.org/10.1590/S1519-69842005000400018
Souza, A. M. B. D., Vieira, G. R., Braga, A. C., Patrício, M. P., Campos, T. S., & Pivetta, K. F. L. (2023). Biometry and storage of triangle palm seeds. Ornamental Horticulture, 29(2), 267-277. https://doi.org/10.1590/2447-536x.v29i2.2618
Spennemann, D. H. (2021). The role of canids in the dispersal of commercial and ornamental palm species. Mammal Research, 66(1), 57-74. https://doi.org/10.1007/s13364-020-00535-6
Sutomo, D., & Chadburn, H. (2021). Pinanga arinasae. The IUCN red list of threatened species. https://www.iucnredlist.org/species/167851151/167853374
The jamovi project. (2022). jamovi (Version 2.3.15.) [Computer Software]. Retrieved from https://www.jamovi.org
Viji, V., Chandra, R., Salim, P. N., & Puthur, J. T. (2015). Germination-associated morphological and anatomical changes in Corypha umbraculifera L. seeds. Phytomorphology, 65(1/2), 11-17.
Wardani, F. F., & Mimin, M. (2020). Characterization of fruit and seeds and identification of Tacca palmata seed storage behaviour using the 100-seed test method. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 6(1), 577-582.
Witono, J. R. (2003). Phenetic study on clustered Pinanga of Java and Bali. Biodiversitas Journal of Biological Diversity, 4(1), 38-42. https://doi.org/10.13057/biodiv/d040108
Witono, J. R., Fijridiyanto, I. A., & Kondo, K. (2024). Karyomorphology of genus Pinanga (Arecaceae) in Java and Bali, Indonesia. Pakistan Journal of Botany, 56(1), 135-140.
Witono, J. R., Moega, J. P., & Somadikarta, S. (2002). Pinanga in Java and Bali. Palms, 46(4), 193-202.
Yudaputra, A., Witono, J. R., Astuti, I. P., Munawaroh, E., Yuzammi, Fijridiyanto, I. A., Zulkarnaen, R. N., Robiansyah, I., Raharjo, P. D., & Cropper, W. P. Jr. (2022). Habitat suitability, population structure and conservation status of Pinanga arinasae (Arecaceae), an endemic palm in Bali Island, Indonesia. Diversity, 14(1), Article 10. https://doi.org/10.3390/d14010010
Zuhud, E. A. M., Al Manar, P., Zuraida, & Hidayati, S. (2020). Potency and conservation of Aren (Arenga pinnata (Wurmb) Merr.) in Meru Betiri National Park, East Java-Indonesia. Jurnal Manajemen Hutan Tropika, 26(3), 212-221. https://doi.org/10.7226/jtfm.26.3.212