Mycorrhizal Influence on Irrigation Efficiency: A Study of Maize under Drought Conditions

Main Article Content

Rohat Gültekin
Ceren GÖRGİŞEN
Tuğba ํYeter
Çağlar Sagun
Kadri Avağ

Abstract

Drought stress is one of the biggest threats to agriculture in different parts of the world, especially in countries in the Mediterranean climate zone. One of the most natural solutions for agricultural sustainability is to use fungi that can establish symbiotic relationships with agricultural products. In this study, the effectiveness of different arbuscular mycorrhizal fungi that can help reduce drought stress in maize plants was tested. The findings revealed that arbuscular mycorrhiza fungi inoculation significantly improved both irrigation water use efficiency (IWUE) and plant biomass under drought stress compared to non-inoculated controls. Notably, Rhizophagus intraradices and Glomus iranicum showed the highest enhancements in IWUE and yield. For example, R. intraradices achieved an irrigation water use efficiency of 16.2 kg/m³ under low drought stress (70% of field capacity) and a yield of 26.9 t ha-1. Under moderate drought stress (50% of field capacity), this species maintained a high IWUE of 16.1 kg m-3 and a yield of 18.4 t ha-1. In severe drought conditions (30% of field capacity), R. intraradices still performed well with an IWUE of 13.5 kg m-3 and a yield of 10.9 t ha-1. Overall, AMF-treated plants exhibited 30-50% higher WUE compared to controls, with G. iranicum and R. intraradices being the most effective in enhancing drought tolerance and plant productivity. These results suggest that integrating AMF into maize cultivation can contribute to sustainable agricultural practices, particularly in regions facing water scarcity.

Article Details

How to Cite
Gültekin, R., GÖRGİŞEN, C., ํYeter T., Sagun, Çağlar, & Avağ, K. (2025). Mycorrhizal Influence on Irrigation Efficiency: A Study of Maize under Drought Conditions. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 26(1), e0265765. https://doi.org/10.55003/cast.2025.265765
Section
Original Research Articles

References

Abdalla, M., & Ahmed, M. A. (2021). Arbuscular mycorrhizal symbiosis enhances water status and soil-plant hydraulic conductance under drought. Frontiers in Plant Science, 12, Article 722954. https://doi.org/10.3389/fpls.2021.722954

Abdalla, M., Bitterlich, M., Jansa, J., Püschel, D., & Ahmed, M. A. (2023). The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. Journal of Experimental Botany, 74(16), 4808-4824. https://doi.org/10.1093/jxb/erad249

Abrar, M., Zhu, Y., Rehman, M. M. U., Batool, A., Duan, H.-X., Ashraf, U., Aqeel, M., Gong, X.-F., Peng, Y.-N., Khan, W., Wang, Z.-Y., & Xiong, Y.-C. (2024). Functionality of arbuscular mycorrhizal fungi varies across different growth stages of maize under drought conditions. Plant Physiology and Biochemistry, 213, Article 108839. https://doi.org/10.1016/j.plaphy.2024.108839

Aguégué, R. M., Assogba, S. A., Salami, H. A. A., Koda, A. D., Agbodjato, N. A., Amogou, O., Sina, H., Salako, K. V., Adjovi, N. R. A., Dagbénonbakin, G., Kakai, R. G., Adjanohoun, A., & Baba-Moussa, L. (2021). Organic fertilizer based on rhizophagus intraradices: Valorization in a farming environment for maize in the South, Center and North of Benin. Frontier in Sustainable Food Systems, 5, Article 605610. https://doi.org/10.3389/fsufs.2021.605610

Al-Gaadi K. A., Tola, E., Madugundu, R., Zeyada, A. M., Alameen, A. A., Edrris, M. K., Edrees, H. F., & Mahjoop, O. (2024). Response of leaf photosynthesis, chlorophyll content and yield of hydroponic tomatoes to different water salinity levels. PLoS ONE, 19(2), Article e0293098. https://doi.org/10.1371/journal.pone.0293098

Aminzadeh, A., Dorostkar, V., & Asghari, H. R. (2025). Soil structural stability improvement using arbuscular mycorrhizal fungi and biochar in water repellent and non-water repellent soil. Soil Use and Management, 41, Article e70024. https://doi.org/10.1111/sum.70024

Basiru, S., Mwanza, H. P., & Hijri, M. (2020). Analysis of arbuscular mycorrhizal fungal ınoculant benchmarks. Microorganisms, 9(1), Article 81. https://doi.org/10.3390/microorganisms9010081

Boomsma, C. R., & Vyn, T. J. (2008). Maize drought tolerance: Potential ımprovements through arbuscular mycorrhizal symbiosis? Field Crops Research, 108, 14-31. https://doi.org/10.1016/j.fcr.2008.03.002

Chandrasekaran, M. (2024). The role of arbuscular mycorrhizal fungi in refining plant photosynthesis and water status under drought stress: a meta-analysis. Plant, Soil and Environment, 70(8), 502-508. https://doi.org/10.17221/27/2024-PSE

Chen, Y., Sun, C., Yan, Y., Jiang, D., Huangfu, S., & Tian, L. (2025). Impact of arbuscular mycorrhizal fungi on maize rhizosphere microbiome stability under moderate drought conditions. Microbiological Research, 290, Article 127957. https://doi.org/10.1016/j.micres.2024.127957

Duan, H.-X., Luo, C.-L., Zhou, R., Zhao, L., Zhu, S.-G., Chen, Y., Zhu, Y., & Xiong, Y.-C. (2024). AM fungus promotes wheat grain filling via improving rhizospheric water & nutrient availability under drought and low density. Applied Soil Ecology, 193, Article 105159. https://doi.org/10.1016/j.apsoil.2023.105159

Duan, H.-X., Luo, C.-L., Zhu, S.-Y., Wang, W., Naseer, M., & Xiong, Y.-C. (2021). Density‐and moisture‐dependent effects of arbuscular mycorrhizal fungus on drought acclimation in wheat. Ecological Applications, 31(8), Article e02444. https://doi.org/10.1002/eap.2444

Erice, G., Cano, C., Bago, A., Ruíz-Lozano, J. M., & Aroca, R. (2024). Contrasting regulation of Phaseolus vulgaris root hydraulic properties under drought and saline conditions by three arbuscular mycorrhizal fungal species from soils with divergent moisture regime. Journal of Soil Science and Plant Nutrition, 24, 2934-2945. https://doi.org/10.1007/s42729-024-01719-8

Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Badji, A., Ndiaye, A., Ndiaye, M., Kyakuwa, P., Anyoni, O. G., Kabaseke, C., Ronoh, A. K., & Ekwangu, J. (2023). Combined effects of ındigenous arbuscular mycorrhizal fungi (AMF) and NPK fertilizer on growth and yields of maize and soil nutrient availability. Sustainability, 15(3), Article 2243. https://doi.org/10.3390/su15032243

Hamedani, N. G., Gholamhoseini, M., Bazrafshan, F., Habibzadeh, F., & Amiri, R. (2022). Yield, irrigation water productivity and nutrient uptake of arbuscular mycorrhiza inoculated sesame under drought stress conditions. Agricultural Water Management, 266, Article 107569. https://doi.org/10.1016/j.agwat.2022.107569

Huang, T., Xie, K., Zhang, Z., Zhang, Q., Li, Y., Lin, S., Zhou, J., Chen, J., & Li, X. (2024). The colonization of the arbuscular mycorrhizal fungus Rhizophagus irregularis affects the diversity and network structure of root endophytic bacteria in maize. Scientia Horticulturae, 326, Article 112774. https://doi.org/10.1016/j.scienta.2023.112774

Jie, W., Yang, D., Yao, Y., & Guo, N. (2022). Effects of Rhizophagus intraradices on soybean yield and the composition of microbial communities in the rhizosphere soil of continuous cropping soybean. Scientific Reports, 12, Article 17390. https://doi.org/10.1038/s41598-022-22473-w

Kaba, S. J., Abunyewa, A. A., Kugbe, J., Kwashie, G. K. S., Ansah, E. O., & Andoh, H. (2021). Arbuscular mycorrhizal fungi and potassium fertilizer as plant biostimulants and alternative research for enhancing plants adaptation to drought stress: Opportunities for enhancing drought tolerance in cocoa (Theobroma cacao L.). Sustainable Environment, 7(1), Article 1963927. https://doi.org/10.1080/27658511.2021.1963927

Kazadi, A. T., Lwalaba, J. L. W., Ansey, B. K., Muzulukwau, J. M., Katabe, G. M., Karul, M. I., Baert, G., Haesaert, G., & Mundende, R.-P. M. (2022). Effect of phosphorus and arbuscular mycorrhizal fungi (AMF) inoculation on growth and productivity of maize (Zea mays L.) in a tropical ferralsol. Gesunde Pflanzen, 74, 159-165. https://doi.org/10.1007/s10343-021-00598-8

Kıran, S., (2019). Effect of vermicompost applications on some morphological, physiological and biochemical parameters of lettuce (Lactuca sativa var. crispa) under drought stress. Notulae Botanicae Horti Agrobobotanici Cluj-Napoca, 47(2), 352-358. https://doi.org/10.15835/nbha47111260

Li, F., Deng, J., Nzabanita, C., Li, Y., & Duan, T. (2019). Growth and physiological responses of perennial ryegrass to an AMF and an Epichloë endophyte under different soil water contents. Symbiosis, 79(2), 151-161. https://doi.org/10.1007/s13199-019-00633-3

Li, J., Zhou, L., Chen, G., Yao, M., Liu, Z., Li, X., Yang, X., Yang, Y., Cai, D., Tuerxun, Z., Li, B., Nie, T., & Chen, X. (2025). Arbuscular mycorrhizal fungi enhance drought resistance and alter microbial communities in maize rhizosphere soil. Environmental Technology and Innovation, 37, Article 103947. https://doi.org/10.1016/j.eti.2024.103947

Liu, M.-Y., Li, Q.-S., Ding, W.-Y., Dong, L.-W., Deng, M., Chen, J.-H., Tian, X., Hashem, A., Al-Arjani, A.-B. F., Alenazi, M. M., Abd-Allah, E. F., & Wu, Q.-S. (2023). Arbuscular mycorrhizal fungi inoculation impacts expression of aquaporins and salt overly sensitive genes and enhances tolerance of salt stress in tomato. Chemical and Biological Technologies in Agriculture, 10(1), Article 5. https://doi.org/10.1186/s40538-022-00368-2

Madouh, T. A., & Quoreshi, A. M. (2023). The function of arbuscular mycorrhizal fungi associated with drought stress resistance in native plants of arid desert ecosystems: A review. Diversity, 15(3), Article 391. https://doi.org/10.3390/d15030391

Martín, F. F., Molina, J. J., Nicolás, E. N., Alarcón, J. J., Kirchmair, M., García, F. J., Garcia, A. J. B., & Bernal, C. (2017). Application of arbuscular mycorrhizae Glomus iranicum var. tenuihypharum var. nova in intensive agriculture: A study case. Journal of Agricultural Science and Technology B, 7, 221-247.

Ni, Y., Bao, H., Zou, R., Wang, Y., Xie, K., Cheng, B., & Li, X. (2025). Aquaporin ZmPIP2; 4 promotes tolerance to drought during arbuscular mycorrhizal fungi symbiosis. Plant and Soil, 508, 1-20. https://doi.org/10.1007/s11104-024-06778-5

Oliveira, T. C., Cabral, J. S. R., Santana, L. R., Tavares, G. G., Santos, L. D. S., Paim, T. P., Müller, C., Silva, F. G., Cosya, A. C., Souchie, E. L., & Mendes, G. C. (2022). The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Scientific Reports, 12(1), Article 9044. https://doi.org/10.1038/s41598-022-13059-7

Püschel, D., Rydlová, J., & Voříšková, A. (2021). The role of mycorrhizal networks in improving drought tolerance of intercropped plants. Journal of Experimental Botany, 72(2), 540-554. https://doi.org/10.1093/jxb/eraa491

Quiroga, G., Erice, G., Aroca, R., & Ruiz-Lozano, J. M. (2019). Arbuscular mycorrhizal symbiosis modifies root hydraulic properties and aquaporin gene expression under drought stress. Plant Cell and Environment, 42(8), 2439-2457. https://doi.org/10.1111/pce.13572

Rasouli, F., Amini, T., Skrovankova, S., Asadi, M., Hassanpouraghdam, M. B., Ercisli, S., & Mlcek, J. (2023). Influence of drought stress and mycorrhizal (Funneliformis mosseae) symbiosis on growth parameters, chlorophyll fluorescence, antioxidant activity, and essential oil composition of summer savory (Satureja hortensis L.) plants. Frontiers in Plant Science, 14, Article 1151467. https://doi.org/10.3389/fpls.2023.1151467

Raya-Hernández, A. I., Jaramillo-Lopez, P. F., Lopez-Carmona, D. A., Diaz, T., Carrera-Valtierra, J. A., & Larsen, J. (2020). Field evidence for maize-mycorrhiza interactions in agroecosystems with low and high P soils under mineral and organic fertilization. Applied Soil Ecology, 149, Article 103511. https://doi.org/10.1016/j.apsoil.2020.103511

Selvakumar, G., Kim, K., Walitang, D., Chanratana, M., Kang, Y., Chung, B., & Sa, T. (2016). Trap culture technique for propagation of arbuscular mycorrhizal fungi using different host plants. Korean Journal of Soil Science and Fertilizer, 49(5), 608-613. https://doi.org/10.7745/kjssf.2016.49.5.608

Shah, S. H., Angel, Y., Houborg, R., Ali, S., & McCabe, M. F. (2019). A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sensing, 11(8), Article 920. https://doi.org/10.3390/rs11080920

Turhan, A. (2021). Interactive effects of boron stress and mycorrhizal (AMF) treatments on tomato growth, yield, leaf chlorophyll and boron accumulation, and fruit characteristics. Archives of Agronomy and Soil Science, 67(14), 1974-1985. https://doi.org/10.1080/03650340.2020.1818724

Wahab, A., Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., & Reddy, S. P. P. (2023). Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants, 12(17), Article 3102. https://doi.org/10.3390/plants12173102

Wu, C., Bi, Y., Zhu, W., & Xue, C. (2024). Optimizing water use strategies in arid coal mining areas: the synergistic effects of layered soil profiles and arbuscular mycorrhizal fungi on plant growth and water use efficiency. Environmental and Experimental Botany, 221, Article 105722. https://doi.org/10.1016/j.envexpbot.2024.105722

Wu, L., Zheng, Y., Liu, S., Jia, X., & Lv, H. (2023). Response of Ammodendron bifolium seedlings inoculated with AMF to drought stress. Atmosphere, 14(6), Article 989. https://doi.org/10.3390/atmos14060989

Xiao, X., Liao, X., Yan, Q., Xie, Y., Chen, J., Liang, G., Chen, M., Xiao, S., Chen, Y., & Liu, J. (2023). Arbuscular mycorrhizal fungi improve the growth, water status, and nutrient uptake of Cinnamomum migao and the soil nutrient stoichiometry under drought stress and recovery. Journal of Fungi, 9(3), Article 321. https://doi.org/10.3390/jof9030321

Zhang, H., Ge, Y., Xie, X., Atefi, A., Wijewardane, N. K., & Thapa, S. (2022a). High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods, 18(1), Article 60. https://doi.org/10.1186/s13007-022-00892-0

Zhang, S., Meng, L., Hou, J., Liu, X., Ogundeji, A. O., Cheng, Z., Yin, T., Clarke, N., Hu, B., & Li, S. (2022b). Maize/soybean intercropping improves stability of soil aggregates driven by arbuscular mycorrhizal fungi in a black soil of northeast China. Plant and Soil, 481(1), 63-82. https://doi.org/10.1007/s11104-022-05616-w