Investigating Transit Timing Variations of a Hot Jupiter HAT-P-43 b
Main Article Content
Abstract
HAT-P-43 b is a hot Jupiter exoplanet that orbits a late-F-type host star with a period of 3.332687 days. In this work, we present a detailed analysis of HAT-P-43 b using 47 light curves from the Transiting Exoplanet Survey Satellite (TESS), 9 light curves from the Kepler space telescope, four light curves from the Thai Robotic Telescopes (TRTs), and 4 previously published light curves from Boisse et al. (2013). The light curves were analyzed to derive HAT-P-43 b’s physical parameters and mid-transit times for each transit using the TransitFit package. Using the newly derived mid-transit times, the transit timing variations (TTV) of HAT-P-43 b were analyzed. To detect the periodicity of the TTV signal, a Generalized Lomb-Scargle (GLS) periodogram was created using the mid-transit times. The analysis revealed a peak at 0.184146 cycles per period, corresponding to a period of 5.43046 periods per cycle, with a false alarm probability (FAP) of 0.54%. Although a low FAP was obtained, the sinusoidal fitting of the HAT-P-43 b TTV did not match well, making it difficult to draw a definitive conclusion about the presence of a third body. Therefore, future observational data will be valuable in confirming whether a third body exists in this system.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Agol, E., & Fabrycky, D. C. (2018). Transit-Timing and duration variations for the discovery and characterization of exoplanets. In H. Deeg, & J. Belmonte (Eds.). Handbook of exoplanets (pp. 797-816). Springer. https://doi.org/10.1007/978-3-319-55333-7_7
Agol, E., Steffen, J., Sari, R., & Clarkson, W. (2005). On detecting terrestrial planets with timing of giant planet transits. Monthly Notices of the Royal Astronomical Society, 359(2), 567-579. https://doi.org/10.1111/j.1365-2966.2005.08922.x
Boisse, I., Hartman, J. D., Bakos, G. Á., Penev, K., Csubry, Z., Béky, B., Latham, D. W., Bieryla, A., Torres, G., Kovács, G., Buchhave, L. A., Hansen, T., Everett, M., Esquerdo, G. A., Szklenár, T., Falco, E., Shporer, A., Fulton, B. J., Noyes, R. W., Stefanik, R. P., Papp, I., . . . Sári, P. (2013). HAT-P-42b and HAT-P-43b. Two inflated transiting hot Jupiters from the HATNet survey. Astronomy and Astrophysics, 558, Article A86. https://doi.org/10.1051/0004-6361/201220993
Hayes, J. J. C., Priyadarshi, A., Kerins, E., Awiphan, S., McDonald, I., A-Thano, N., Morgan, J. S., Humpage, A., Charles, S., Wright, M., Joshi, Y. C., Jiang, I., Inyanya, T., Padjaroen, T., Munsaket, P., Chuanraksasat, P., Komonjinda, S., Kittara, P., Dhillon, V. S., Marsh, T. R., Reichart, D. E., . . . Poshyachinda, S. (2023). TransitFit: combined multi-instrument exoplanet transit fitting for JWST, HST, and ground-based transmission spectroscopy studies. Monthly Notices of the Royal Astronomical Society, 527(3), 4936-4954. https://doi.org/10.1093/mnras/stad3353
Holman, M. J., & Murray, N. W. (2005). The use of transit timing to detect Terrestrial-Mass extrasolar planets. Science, 307(5713), 1288-1291. https://doi.org/10.1126/science.1107822
Li, Z., Kane, S. R., Dalba, P. A., Howard, A. W., & Isaacson, H. T. (2022). New dynamical state and habitability of the HD 45364 planetary system. The Astronomical Journal, 164(4), Article 163. https://doi.org/10.3847/1538-3881/ac8d63
Koch, D. G., Borucki, W. J., Basri, G., Batalha, N. M., Brown, T. M., Caldwell, D., Christensen-Dalsgaard, J., Cochran, W. D., DeVore, E., Dunham, E. W., Gautier, T. N., Geary, J. C., Gilliland, R. L., Gould, A., Jenkins, J., Kondo, Y., Latham, D. W., Lissauer, J. J., Marcy, G., Monet, D., Sasselov, D., . . . Wu, H. (2010). Kepler mission design, realized photometric performance, and early science. The Astrophysical Journal Letters, 713(2), L79-L86. https://doi.org/10.1088/2041-8205/713/2/l79
Korth, J., Chaturvedi, P., Parviainen, H., Carleo, I., Endl, M., Guenther, E. W., Nowak, G., Persson, C. M., MacQueen, P. J., Mustill, A. J., Cabrera, J., Cochran, W. D., Lillo-Box, J., Hobbs, D., Murgas, F., Greklek-McKeon, M., Kellermann, H., Hébrard, G., Fukui, A., Pallé, E., Jenkins, J. M., . . . Winn, J. N. (2024). TOI-1408: Discovery and photodynamical modeling of a small inner companion to a hot Jupiter revealed by transit timing variations. The Astrophysical Journal Letters, 971(2), Article L28. https://doi.org/10.3847/2041-8213/ad65fd
Kreidberg, L. (2015). Batman: BAsic Transit model cAlculatioN in Python. Publications of the Astronomical Society of the Pacific, 127(957), 1161-1165. https://doi.org/10.1086/683602
Nesvorný, D., & Morbidelli, A. (2008). Mass and orbit determination from transit timing variations of exoplanets. The Astrophysical Journal, 688(1), 636-646. https://doi.org/10.1086/592230
Parviainen, H., & Aigrain, S. (2015). LDTK: Limb darkening toolkit. Monthly Notices of the Royal Astronomical Society, 453(4), 3822-3827. https://doi.org/10.1093/mnras/stv1857
Ricker, G. R., Winn, J. N., Vanderspek, R., Latham, D. W., Bakos, G. Á., Bean, J. L., Berta-Thompson, Z. K., Brown, T. M., Buchhave, L., Butler, N. R., Butler, R. P., Chaplin, W. J., Charbonneau, D., Christensen-Dalsgaard, J., Clampin, M., Deming, D., Doty, J., De Lee, N., Dressing, C., Dunham, E. W., . . .Villasenor, J. (2014). Transiting exoplanet survey satellite (TESS). Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE, 9143, 914320. https://doi.org/10.1117/12.2063489
Speagle, J. S. (2020). Dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Monthly Notices of the Royal Astronomical Society, 493(3), 3132-3158. https://doi.org/10.1093/mnras/staa278
Udry, S., & Santos, N. C. (2007). Statistical properties of exoplanets. Annual Review of Astronomy and Astrophysics, 45, 397-439. https://doi.org/10.1146/annurev.astro.45.051806.110529
von Essen, C., Wedemeyer, S., Sosa, M. S., Hjorth, M., Parkash, V., Freudenthal, J., Mallonn, M., Miculán, R. G., Zibecchi, L., Cellone, S., & Torres, A. F. (2019). Indications for transit-timing variations in the exo-Neptune HAT-P-26b. Astronomy and Astrophysics, 628, Article A116. https://doi.org/10.1051/0004-6361/201731966
Zechmeister, M., & Kürster, M. (2009). The generalised Lomb-scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astronomy and Astrophysics, 496(2), 577-584. https://doi.org/10.1051/0004-6361:200811296