Effects of Air, Vacuum, and Nitrogen Annealing on Structure, Bone Regeneration, and Antimicrobial Activity of Zinc-Doped Ca-P-O Microfibers

Main Article Content

Siriwan Tocho
Arthit Ruttakorn
Chakkaphan Wattanawikkam
Atipong Bootchanont

Abstract

Calcium phosphate (CaP) is a family of materials closely resembling the mineral phase of natural bone and is widely used in bone tissue engineering for its biocompatibility and bioactivity. In this work, the starting material, Zn-doped calcium phosphate (Zn-CaP), was synthesized using the sol-gel method. Then, microfibers were fabricated using polyvinylpyrrolidone/Zn-CaP and the electrospinning technique. The samples were annealed under various conditions (air, vacuum, and nitrogen) at 800°C. The results indicated that the average fiber diameter ranged from 300 to 2000 microns, as observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis demonstrated that the main phase in air-annealed samples was calcium carbonate, with hydroxyapatite as the second phase. For vacuum annealing, the main phase was calcium carbonate, and the second phases were calcium oxide and hydroxyapatite, while nitrogen annealing resulted in an amorphous phase. Fourier transform infrared spectroscopy (FTIR) results were consistent with the XRD analysis. In addition, the local structure of Zn was investigated using X-ray absorption spectroscopy (XAS), which indicated the presence of a ZnO phase in air-annealed fibers and a ZnS phase in vacuum-annealed fibers. Nitrogen annealing resulted in an amorphous phase. Moreover, the simulated body fluid (SBF) immersion test results showed that the most significant formation of apatite layers occurred in nitrogen-annealed samples, enhancing the in vivo bone bioactivity of the microfibers. The antimicrobial activity results showed that the air and vacuum-annealed fibers demonstrated 100% effective against Staphylococcus epidermidis and Pseudomonas aeruginosa.

Article Details

How to Cite
Tocho, S. ., Ruttakorn, A. ., Wattanawikkam, C. ., & Bootchanont, A. (2025). Effects of Air, Vacuum, and Nitrogen Annealing on Structure, Bone Regeneration, and Antimicrobial Activity of Zinc-Doped Ca-P-O Microfibers. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 26(1), e0265899. https://doi.org/10.55003/cast.2025.265899
Section
Original Research Articles

References

Alfata, R., Ramahdita, G., & Yuwono, A. H. (2020). The effect of additional zinc oxide to antibacterial property of chitosan/collagen-based scaffold. Materials Science Forum, 1000, 107-114.

Bootchanont, A., Wechprasit, T., Areesamarn, N., Pholprom, R., Hwangphon, T., Temprom, L., Amonpattaratkit, P., Klysubun, W., & Yimnirun, R. (2020). Comparison of local structure between Mg/Mn-doped natural and synthetic hydroxyapatites by X-ray absorption spectroscopy. Radiation Physics and Chemistry, 177, Article 109075. https://doi.org/10.1016/j.radphyschem.2020.109075

Bootchanont, A., Wechprasit, T., Isran, N., Theangsunthorn, J., Chaosuan, N., Chanlek, N., Kidkhunthod, P., Yimnirun, R., Jiamprasertboon, A., Eknapakul, T., Siritanon, T., Sailuam, W., & Saisopa, T. (2022). Correlation of the antibacterial activity and local structure in Zn-and Mn-doped hydroxyapatites by Rietveld refinement and the first-principles method. Materialia, 26, Article 101586. https://doi.org/10.1016/j.mtla.2022.101586

Bouasla, N., Abderrahmane, S., Obeizi, Z., Sarah, M., & Saoudi, A. (2024). Antimicrobial Activity of ZnS and ZnO‐TOP nanoparticles againts pathogenic bacteria. Chemistry and Biodiversity, 21(12), Article e202400724. https://doi.org/10.1002/cbdv.202400724

Braga, F., da Silva, A. C., Allegrini, S. Jr, & Ottoni, C. (2014). Calcium phosphate graft substitute: When the impact of innovation is in the form rather than content. In Proceedings of 26th European conference on biomaterials (pp. 1-12). European Society for Biomaterials.

Chen, X., Li, H., Ma, Y., & Jiang, Y. (2023). Calcium phosphate-based nanomaterials: preparation, multifunction, and application for bone tissue engineering. Molecules, 28(12), Article 4790. https://doi.org/10.3390/molecules28124790

Chen, Z., Zhang, W., Wang, M., Backman, L. J., & Chen, J. (2022). Effects of zinc, magnesium, and iron ions on bone tissue engineering. ACS Biomaterials Science and Engineering, 8(6), 2321-2335. https://doi.org/10.1021/acsbiomaterials.2c00368

Dimassi, S., Tabary, N., Chai, F., Zobrist, C., Hornez, J.-C., Cazaux, F., Blanchemain, N., & Martel, B. (2022). Polydopamine treatment of chitosan nanofibers for the conception of osteoinductive scaffolds for bone reconstruction. Carbohydrate Polymers, 276, Article 118774. https://doi.org/10.1016/j.carbpol.2021.118774

Dong, Y., Liang, J., Cui, Y., Xu, S., & Zhao, N. (2018). Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Carbohydrate polymers, 197, 183-193. https://doi.org/10.1016/j.carbpol.2018.05.086

Franco, P. Q., João, C. F. C., Silva, J. C., & Borges, J. P. (2012). Electrospun hydroxyapatite fibers from a simple sol–gel system. Materials Letters, 67(1), 233-236. https://doi.org/10.1016/j.matlet.2011.09.090

Hassan, M., Sulaiman, M., Yuvaraju, P. D., Galiwango, E., Rehman, I. U., Al-Marzouqi, A. H., Khaleel, A., & Mohsin, S. (2022). Biomimetic PLGA/strontium-zinc nano hydroxyapatite composite scaffolds for bone regeneration. Journal of Functional Biomaterials, 13(1), Article 13. https://doi.org/10.3390/jfb13010013

Hawkins, F., Garla, V., Allo, G., Males, D., Mola, L., & Corpas, E. (2021). Senile and postmenopausal osteoporosis: Pathophysiology, diagnosis, and treatment. In E. Corpas (Ed.). Endocrinology of aging (pp. 131-169). Elsevier. https://doi.org/10.1016/B978-0-12-819667-0.00005-6

Hughes, E. A., Robinson, T. E., Bassett, D. B., Cox, S. C., & Grover, L. M. (2019). Critical and diverse roles of phosphates in human bone formation. Journal of Materials Chemistry B, 7(47), 7460-7470. https://doi.org/10.1039/C9TB02011J

Kim, J. I., Kim, J. Y., Kook, S.-H., & Lee, J.-C. (2022). A novel electrospinning method for self-assembled tree-like fibrous scaffolds: Microenvironment-associated regulation of MSC behavior and bone regeneration. Journal of Materials Science and Technology, 115, 52-70. https://doi.org/10.1016/j.jmst.2021.10.039

Kumar, S., & Maurya, R. (2018). Plant drugs in the treatment of osteoporosis. In S. C. Mandai, V. Mandal, & T. Konishi (Eds.). Natural Products and Drug Discovery (pp. 179-212). Elsevier. https://doi.org/10.1016/B978-0-08-102081-4.00008-3

Lao, L., Wang, Y., Zhu, Y., Zhang, Y., & Gao, C. (2011). Poly (lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 22, 1873-1884. https://doi.org/10.1007/s10856-011-4374-8

Lee, J.-H., & Kim, Y.-J. (2014). Hydroxyapatite nanofibers fabricated through electrospinning and sol–gel process. Ceramics International, 40(2), 3361-3369. https://doi.org/10.1016/j.ceramint.2013.09.096

Mankotia, P., Sharma, K., Sharma, V., Sehgal, R., & Kumar, V. (2023). Inorganic bionanocomposites for bone tissue engineering. In M. S. Hasnain, A. K. Nayak, & T. M. Aminabhavi (Eds.). Inorganic Nanosystems (pp. 589-619). Elsevier. https://doi.org/10.1016/B978-0-323-85784-0.00013-3

Min, K. H., Kim, D. H., Kim, K. H., Seo, J.-H., & Pack, S. P. (2024). Biomimetic scaffolds of calcium-based materials for bone regeneration. Biomimetics, 9(9), Article 511. https://doi.org/10.3390/biomimetics9090511

Mondal, S., Pal, U., & Dey, A. (2016). Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceramics International, 42(16), 18338-18346. https://doi.org/10.1016/j.ceramint.2016.08.165

O’Connor, J. P., Kanjilal, D., Teitelbaum, M., Lin, S. S., & Cottrell, J. A. (2020). Zinc as a therapeutic agent in bone regeneration. Materials, 13(10), Article 2211. https://doi.org/10.3390/ma13102211

Özdemir, G., & Yapar, S. (2020). Preparation and characterization of copper and zinc adsorbed cetylpyridinium and N-lauroylsarcosinate intercalated montmorillonites and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 188, Article 110791. https://doi.org/10.1016/j.colsurfb.2020.110791

Ren, L., Wang, J., Yang, F.-Y., Wang, L., Wang, D., Wang, T.-X., & Tian, M.-M. (2010). Fabrication of gelatin–siloxane fibrous mats via sol–gel and electrospinning procedure and its application for bone tissue engineering. Materials Science and Engineering: C, 30(3), 437-444. https://doi.org/10.1016/j.msec.2009.12.013

Sebastian, T., Preisker, T., Gorjan, L., Graule, T., Aneziris, C., & Clemens, F. (2020). Synthesis of hydroxyapatite fibers using electrospinning: A study of phase evolution based on polymer matrix. Journal of the European Ceramic Society, 40(6), 2489-2496. https://doi.org/10.1016/j.jeurceramsoc.2020.01.070

Sronsri, C., Kongpop, U., & Sittipol, W. (2020). Quantitative analysis of calcium carbonate formation in magnetized water. Materials Chemistry and Physics, 245(3), Article 122735. https://doi.org/10.1016/j.matchemphys.2020.122735

Supanwong, K., & Nounurai, P. (2020). Identification and elimination of errors in the drop plate counts. Maejo International Journal of Science and Technology, 14(3), 252-260.

Tavoni, M., Dapporto, M., Tampieri, A., & Sprio, S. (2021). Bioactive calcium phosphate-based composites for bone regeneration. Journal of Composites Science, 5(9), Article 227. https://doi.org/10.3390/jcs5090227

Tripathi, G., & Basu, B. (2012). A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceramics International, 38(1), 341-349. https://doi.org/10.1016/j.ceramint.2011.07.012

Wan, B., Ruan, Y., Shen, C., Xu, G., Forouzanfar, T., Lin, H., & Wu, G. (2022). Biomimetically precipitated nanocrystalline hydroxyapatite. Nano TransMed, 1(2-4), Article e9130008. https://doi.org/10.26599/NTM.2022.9130008

Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749-4757. https://doi.org/10.1016/j.biomaterials.2003.12.005

Wen, X., Wang, J., Pei, X., & Zhang, X. (2023). Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. Journal of Materials Chemistry B, 11, 11405-11425. https://doi.org/10.1039/D3TB01874A

Wijedasa, N. P., Broas, S. M., Daso, R. E., & Banerjee, I. A. (2020). Varying fish scale derived hydroxyapatite bound hybrid peptide nanofiber scaffolds for potential applications in periodontal tissue regeneration. Materials Science and Engineering: C, 109, Article 110540. https://doi.org/10.1016/j.msec.2019.110540

Wolfson, E. M., DeKalb, A., & Rojhani, A. (2009). Women’s health in the 21st century.International Journal of Gynecology and Obstetrics, 104, S2-S3. https://doi.org/10.1016/j.ijgo.2008.11.029

Wong, S. K., Yee, M. M. F., Chin, K.-Y., & Ima-Nirwana, S. (2023). A review of the application of natural and synthetic scaffolds in bone regeneration. Journal of Functional Biomaterials, 14(5), Article 286. https://doi.org/10.3390/jfb14050286

Yan, X., Yao, H., Luo, J., Li, Z., & Wei, J. (2022). Functionalization of electrospun nanofiber for bone tissue engineering. Polymers, 14(14), Article 2940. https://doi.org/10.3390/polym14142940

Zhao, T., Zhang, J., Gao, X., Yuan, D., Gu, Z., & Xu, Y. (2022). Electrospun nanofibers for bone regeneration: from biomimetic composition, structure to function. Journal of Materials Chemistry B, 10(32), 6078-6106. https://doi.org/10.1039/D2TB01182D