Non-invasive Blood Glucose Measurement Using Near-infrared Spectroscopy and Microcontroller Equipment

Main Article Content

Umpon Jairuk
Akapong Phunpueok
Nithiwatthn Choosakul

Abstract

This study focuses on the development of modern, non-invasive equipment for measuring blood glucose levels using near-infrared (NIR) spectroscopy with a transmitter of 940 nm wavelength light emitting diode (LED). The aim is to eliminate the need for invasive methods and provide greater convenience for patients. The equipment operates by emitting infrared spectrum from a high-speed LED VLSB3940, which is passed through the patient's fingertip and receive by a BPX 65 photodiode receiver. The received signal is converted into voltage by the BPX65 photodiode. The output voltage from the BPX65, which varies with glucose concentration in the blood, is then amplified by an operational amplifier (op-amp) circuit. The amplified voltages are collected by an Arduino microcontroller that is interfaced with a touch screen display. A corresponding C-Arduino language program controls all processes and displays the measurement results on the screen. The study concludes that the near-infrared spectrum can effectively transmit signals through the blood glucose in the fingertip, yielding results comparable to the old invasive method. The linear regression of invasive and non-invasive blood glucose measurements had R2 values of 0.99 and 0.82, respectively. The plot of Clarke Error Grid Analysis (CEGA) showed that most of points were in zone A, indicating high accuracy. However, further development of the system is recommended, including the exploration of alternative transmitters of 1550 nm wavelength, better receivers, and circuits to optimize the equipment for commercial uses.

Article Details

How to Cite
Jairuk, U., Phunpueok, A., & Choosakul, N. . (2025). Non-invasive Blood Glucose Measurement Using Near-infrared Spectroscopy and Microcontroller Equipment. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0266010. https://doi.org/10.55003/cast.2025.266010
Section
Original Research Articles

References

Al-Hafidh, M. H., Glidle, A., Wilson, R., Kelly, A. E., Reboud, J., & Cooper, J. M. (2019). Multireflection polarimetry in microfluidics. IEEE Sensors Letters, 3(10), 1-4. https://doi.org/10.1109/lsens.2019.2943688

Beutler, E., & Waalen, J. (2006). The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? Blood, 107(5), 1747-1750. https://doi.org/10.1182/blood-2005-07-3046

Boustany, N. N., Boppart, S. A., & Backman, V. (2010). Microscopic imaging and spectroscopy with scattered light. Annual Review of Biomedical Engineering, 12(1), 285-314. https://doi.org/10.1146/annurev-bioeng-061008-124811

Busher, J. T. (1990) Serum albumin and globulin. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.). Clinical methods: The history, physical, and laboratory examinations (3rd Ed., pp. 497-499). Butterworths. https://www.ncbi.nlm.nih.gov/books/NBK204/

Cengiz, E., & Tamborlane, W. V. (2009). A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technology and Therapeutics, 11(S1), S-11-S-16. https://doi.org/10.1089/dia.2009.0002

Cho, O. K., Kim, Y. O., Mitsumaki, H., & Kuwa, K. (2004). Noninvasive Measurement of Glucose by Metabolic Heat Conformation Method. Clinical Chemistry, 50(10), 1894-1898. https://doi.org/10.1373/clinchem.2004.036954

Dean, L. (2005). Hemolytic disease of the newborn. National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK2266/

Haaland, D. M., Robinson, M. R., Koepp, G. W., Thomas, E. V., & Eaton, R. P. (1992). Reagentless near-infrared determination of glucose in whole blood using multivariate calibration. Applied Spectroscopy, 46(10), 1575-1578. https://doi.org/10.1366/000370292789619232

Harman-Boehm, I., Gal, A., Raykhman, A. M., Naidis, E., & Mayzel, Y. (2010). Noninvasive glucose monitoring: Increasing accuracy by combination of multi-technology and multi-sensors. Journal of Diabetes Science and Technology, 4(3), 583-595. https://doi.org/10.1177/193229681000400312

Jacques, S. L. (2013). Optical properties of biological tissues: a review. Physics in Medicine and Biology, 58(11), R37-R61. https://doi.org/10.1088/0031-9155/58/11/r37

Kasahara, R., Kino, S., Soyama, S., & Matsuura, Y. (2017). Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomedical Optics Express, 9(1), Article 289. https://doi.org/10.1364/boe.9.000289

Kozma, B., Párta, L., Zalai, D., Gergely, S., & Salgó, A. (2014). A model system and chemometrics to develop near infrared spectroscopic monitoring for Chinese hamster ovary cell cultivations. Journal of Near Infrared Spectroscopy, 22(6), 401-410. https://doi.org/10.1255/jnirs.1133

Laffel, L. (1999). Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metabolism Research and Reviews, 15(6), 412-426. https://doi.org/10.1002/(sici)1520-7560(199911/12)15:6%3C412::aid-dmrr72%3E3.0.co;2-8

Larin, K. V., Eledrisi, M. S., Motamedi, M., & Esenaliev, R. O. (2002). Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects. Diabetes Care, 25(12), 2263-2267. https://doi.org/10.2337/diacare.25.12.2263

Larin, K. V., Motamedi, M., Ashitkov, T. V., & Esenaliev, R. O. (2003). Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study. Physics in Medicine and Biology, 48(10), 1371-1390. https://doi.org/10.1088/0031-9155/48/10/310

Madsen, S. J. (2016). Physics of photodynamic therapy. In B. J.-F. Wong, & J. Ilgner (Eds.). Biomedical Optics in Otorhinolaryngology (pp. 287-309). Springer. https://doi.org/10.1007/978-1-4939-1758-7_18

Maier, J. S., Walker, S. A., Fantini, S., Franceschini, M. A., & Gratton, E. (1994). Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared. Optics Letters, 19(24), 2062-2064. https://doi.org/10.1364/ol.19.002062

Maruo, K., & Yamada, Y. (2015). Near-infrared noninvasive blood glucose prediction without using multivariate analyses: introduction of imaginary spectra due to scattering change in the skin. Journal of Biomedical Optics, 20(4), Article 047003. https://doi.org/10.1117/1.jbo.20.4.047003

McNichols, R. J., & Coté, G. L. (2000). Optical glucose sensing in biological fluids: an overview. Journal of Biomedical Optics, 5(1), 5-16. https://doi.org/10.1117/1.429962

Mishchenko, M. I. (2009). Tissue optics: Light scattering methods and instruments for medical diagnostics, V. Tuchin. 2nd ed. SPIE Press, Bellingham, WA (2007) Hardbound, ISBN 0-8194-6433-3, xl+841pp. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(8), 528. https://doi.org/10.1016/j.jqsrt.2009.02.009

Mukherjee, P., Hagen, N., & Otani, Y. (2018). Glucose sensing in the presence of scattering by analyzing a partial Mueller matrix. Optik, 180, 775-781. https://doi.org/10.1016/j.ijleo.2018.11.157

Olczuk, D., & Priefer, R. (2018). A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus. Diabetes and Metabolic Syndrome, 12(2), 181-187. https://doi.org/10.1016/j.dsx.2017.09.005

Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: a review of current and emerging technology. Diabetic Medicine, 26(3), 197-210. https://doi.org/10.1111/j.1464-5491.2008.02642.x

Pleitez, M. A., Lieblein, T., Bauer, A., Hertzberg, O., von Lilienfeld-Toal, H., & Mäntele, W. (2012). In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy. Analytical Chemistry, 85(2), 1013-1020. https://doi.org/10.1021/ac302841f

Rogers, J. D., Radosevich, A. J., Yi, J., & Backman, V. (2013). Modeling light scattering in tissue as continuous random media using a versatile refractive index correlation function. IEEE Journal of Selected Topics in Quantum Electronics, 20(2), Article 7000514. https://doi.org/10.1109/jstqe.2013.2280999

Shaw, R. A., & Mantsch, H. H. (2006). Infrared spectroscopy in clinical and diagnostic analysis. Encyclopedia of Analytical Chemistry. John Wiley & Sons. https://doi.org/10.1002/9780470027318.a0106

So, C.-H., Choi, K.-S., Wong, T. K., & Chung, J. W. (2012). Recent advances in noninvasive glucose monitoring. Medical Devices, 5, 45-52. https://doi.org/10.2147/mder.s28134

Srivastava, A., Chowdhury, M. K., Sharma, S., & Sharma, N. (2014). Measurement of glucose by using modulating ultrasound with optical technique in normal and diabetic human blood serum. In 2014 International conference on advances in engineering and technology research (pp. 1-5). IEEE. https://doi.org/10.1109/ICAETR.2014.7012942

Swinehart, D. F. (1962). The Beer-Lambert law. Journal of Chemical Education, 39(7), Article 333. https://doi.org/10.1021/ed039p333

Tang, F., Wang, X., Wang, D., & Li, J. (2008). Non-Invasive glucose measurement by use of metabolic heat conformation method. Sensors, 8(5), 3335-3344. https://doi.org/10.3390/s8053335

Umpierrez, G., & Korytkowski, M. (2016). Diabetic emergencies - ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nature Reviews. Endocrinology, 12(4), 222-232. https://doi.org/10.1038/nrendo.2016.15

Wood, M. F. G., Côté, D., & Vitkin, I. A. (2008). Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media. Journal of Biomedical Optics, 13(4), Article 044037. https://doi.org/10.1117/1.2968198

Yadav, J., Rani, A., Singh, V., & Murari, B. M. (2014). Near-infrared LED based non-invasive blood glucose sensor. In International conference on signal processing and integrated networks (SPIN) (pp. 591-594). IEEE. https://doi.org/10.1109/SPIN.2014.6777023

Yeh, Y.-C., Yang, S., Zhao, F., & Schmidt, D. (2014). Noninvasive glucose monitoring by mid-infrared self-emission method. In Proceedings of the international joint conference on biomedical engineering systems and technologies (pp. 107-111). Science and Technology Publications. https://doi.org/10.5220/0004750101070111

Zhang, R., Liu, S., Jin, H., Luo, Y., Zheng, Z., Gao, F., & Zheng, Y. (2019). Noninvasive electromagnetic wave sensing of glucose. Sensors, 19(5), Article 1151. https://doi.org/10.3390/s19051151

Zhou, Y., Zeng, N., Ji, Y., Li, Y., Dai, X., Li, P., Duan, L., Ma, H., & He, Y. (2011). Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber. Journal of Biomedical Optics, 16(1), Article 015004. https://doi.org/10.1117/1.3528658

Zirk, K., & Poetzschke, H. (2004). On the suitability of refractometry for the analysis of glucose in blood-derived fluids. Medical Engineering and Physics, 26(6), 473-481. https://doi.org/10.1016/j.medengphy.2004.03.008