Synthesis and Characterization of Natural HAp/β-TCP Biphasic Calcium Phosphate from Salmon Bone Using a Simplified, Low-cost Technique
Main Article Content
Abstract
Bioceramics containing biphasic calcium phosphates (BCP) are the preferred material for various bone healing applications. BCP consists of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAp) and offers a balance between solubility and resorption, which promotes cell interaction and tissue growth. There is high demand to synthesize BCP from natural sources using simple and inexpensive methods. This study investigated the effects of calcination temperature on the phase structure, chemical composition, and microstructure of BCP powders synthesized from raw salmon bone (Atlantic salmon) using a simplified, low-cost technique. The successful synthesis of BCP powder from raw salmon bone was confirmed using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The physical and chemical characteristics were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). XRD results revealed the coexistence of HAp and β-TCP phases at calcination temperatures above 600°C for 2 h, indicating the formation of BCP compounds. The relative phase content of HAp and β-TCP changed when the calcination temperature increased from 600 to 1000°C. The crystallite size of HAp and β-TCP increased while the lattice strain decreased as the calcination temperature increased. All samples showed polyhedral lumps of irregular sizes, and the Ca/P ratio decreased from 2.14 to 1.95 with higher calcination temperatures. The FTIR results of all samples revealed the existence of the functional groups of phosphate (PO43-) hydroxyl (OH-) and carbonate (CO32-), which are characteristic of the BCP structure. The optimal phase ratio of HAp/β-TCP at approximately 60:40 was obtained by the samples at a calcination temperature of 800°C. This study reports on a new simplified, low-cost technique to synthesize BCP powder from salmon bone.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abdulridha, N. J., Al-Ghaban, A. M., & Al-Obaidi, A. J. (2024). Physical and structural properties of biphasic calcium phosphate BCP reinforced with silicene fillers. AIP Conference Proceedings, 3091(1), Article 030003. https://doi.org/10.1063/5.0204640
Afriani, F., Siswoyo, Amelia, R., Hudatwi, M., Zaitun, & Tiandho, Y. (2020). Hydroxyapatite from natural sources: methods and its characteristics. IOP Conference Series: Earth and Environmental Science, 599, Article 012055. https://doi.org/10.1088/1755-1315/599/1/012055
Ahmadi, M., Dini, G., Afshar, M., & Ahmadpour, F. (2022). Synthesis, characterization, and bioactivity evaluation of biphasic calcium phosphate nanopowder containing 5.0 mol% strontium, 0.6 mol% magnesium, and 0.2 mol% silicon for bone regeneration. Journal of Materials Research, 37(11), 1917-1928. https://doi.org/10.1557/s43578-022-00604-3
Berent, K., Komarek, S., Lach, R., & Pyda, W. (2019). The effect of calcination temperature on the structure and performance of nanocrystalline mayenite powders. Materials, 12(21), Article 3476. https://doi.org/10.3390/ma12213476
Bhardwaj, S., Thakur, N., & Kumar, S., (2023). Effect of calcination temperature on structural and electrical properties of K0.5Bi0.5TiO3 ceramics prepared by solid-state route. Bulletin of Materials Science, 46, Article 170. https://doi.org/10.1007/s12034-023-03014-1
Chen, J., Wen, Z., Zhong, S., Wang, Z., Wu, J., & Zhang, Q. (2015). Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion. Materials and Design, 87, 445-449. https://doi.org/10.1016/j.matdes.2015.08.056
Cheng, L., Ye, F., Yang, R., Lu, X., Shi, Y., Li, L., Fan, H., & Bu, H. (2010). Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomaterialia, 6(4), 1569-1574. https://doi.org/10.1016/j.actbio.2009.10.050
de Oliveira, R. S., Brigato, R., Madureira, J. F. G., Cruz, A. A. V., Filho, F. V. D. M., Alonso, N., Machado, H.R. (2007). Reconstruction of a large complex skull defect in a child: a case report and literature review. Child's Nervous System, 23(10), 1097-1102. https://doi.org/10.1007/s00381-007-0413-7
Deng, K., Chen, H., Dou, W., Cai, Q., Wang, X., Wang, S., & Wang, D. (2022a). Preparation and characterization of porous HA/β- TCP biphasic calcium phosphate derived from butterfish bone. Materials Technology, 37(10), 1388-1396. https://doi.org/10.1080/10667857.2021.1950886
Deng, K., Liu, Z., Dou, W., Cai, Q., Ma, W., & Wang, S. (2022b). HA/β-TCP biphasic calcium phosphate ceramics derived from butterfish bones loaded with bone marrow mesenchymal stem cells promote osteogenesis. Frontiers in Materials, 9, Article 928075. https://doi.org/10.3389/fmats.2022.928075
Duta, L., Dorcioman, G., & Grumezescu, V. (2021). A review on biphasic calcium phosphate materials derived from fish discards. Nanomaterials, 11(11), Article 2856. https://doi.org/10.3390/nano11112856
Ebrahimi, M., Botelho, M. G., & Dorozhkin, S. V. (2017). Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Materials Science and Engineering: C Materials for Biological Application, 71, 1293-1312. https://doi.org/10.1016/j.msec.2016.11.039
Gallant, M. A., Brown, D. M., Hammond, M., Wallace, J. M, Du, J., Deymier-Black, A. C., Almer, J. D., Stock, S. R., Allen, M. R., & Burr, D. B. (2014). Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone, 61, 191-200. https://doi.org/10.1016/j.bone.2014.01.009
Iyyappan, E., Wilson, P., Sheela, K., & Ramya, R. (2016). Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods. Materials Science and Engineering: C Materials for Biological Application, 63, 554-562. https://doi.org/10.1016/j.msec.2016.02.076
Komur, B., Altun, E., Aydogdu, M. O., Bilgiç, D., Gokce, H., Ekren, N., Salman, S., Inan, A. T., Oktarh, F. N., & Gunduz, O. (2017), Hydroxyapatite synthesis from fish bones: Atlantic salmon (Salmon Salar). Acta Physica Polonica A, 131(3), 400-402.
Kornphom, C., Saenkam, K., & Bongkarn, T. (2023). Enhanced energy storage properties of BNT–ST–AN relaxor ferroelectric ceramics fabrication by the solid-state combustion technique. Physica status solidi (a), 220(10), Article 2200240. https://doi.org/10.1002/pssa.202200240
Kornphom, C., Saenkam, K., Yotthuan, S., Vittayakorn, N., & Bongkarn, T. (2024). Enhanced electrical and energy storage performances of Fe, Sb co-doped BNBCTS ceramics synthesized via the solid-state combustion technique. Ceramics International, 50(23), 51789-51803. https://doi.org/10.1016/j.ceramint.2024.02.203
Kong, Y.-M., Kim, H.-E., Kim, H.-W. (2008). Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite–tricalcium phosphate biphasic ceramics. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 84(2), 334-339. https://doi.org/10.1002/jbm.b.30876
Kostov-Kytin, V. V., Dyulgerova, E., Ilieva, R, & Petkova, V., (2018). Powder X-ray diffraction studies of hydroxyapatite and β-TCP mixtures processed by high energy dry milling. Ceramics International, 44(7), 8664-8671. https://doi.org/10.1016/j.ceramint.2018.02.094
Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research, 62(4), 600-612. https://doi.org/10.1002/jbm.10280
Larosi, M. B., Saracho, J. M. P., Pineiro, R. C., Rodriguez, F. L., & Fong, B. M. L. (2009). Biphasic calcium phosphate and method for obtaining same from fish bones. EP 2,075,231 A1. European Patent Office.
Latif, A. F. A., Mohd Pu’ad, N. A. S., Ramli, N. A. A., Muhamad, M. S., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2020). Extraction of biological hydroxyapatite from tuna fish bone for biomedical applications. Materials Science Forum, 1010, 584-589. https://doi.org/10.4028/www.scientific.net/msf.1010.584
Lolo, J. A., Ambali, D. P. P., Jefriyanto, W., Handayani, D., Afridah, W., Wikurendra, E. A., Amalia, R., & Syafiuddin, A. (2022). Synthesis and characterization of hydroxyapatite derived from milkfish bone by simple heat treatments. Biointerface Research in Applied Chemistry, 12(2), 2440-2449. https://doi.org/10.33263/BRIAC122.24402449
Liou, S.-C., Chen, S.-Y., Lee, H.-Y., & Bow, J.-S. (2004). Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials, 25(2), 189-196. https://doi.org/10.1016/S0142-9612(03)00479-4
Malakausaite-Petruleviciene, M., Stankeviciute, Z., Niaura, G., Prichodko, A., & Kareiva, A. (2015). Synthesis and characterization of sol–gel derived calcium hydroxyapatite thin films spin-coated on silicon substrate. Ceramics International, 41(6), 7421-7428. https://doi.org/10.1016/j.ceramint.2015.02.055
Motskin, M., Wright, D. M., Muller, K., Kyle, N., Gard, T. G., Porter, A. E., & Skepper, J. N. (2009). Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials, 30(19), 3307-3317. https://doi.org/10.1016/j.biomaterials.2009.02.044
Muhammad, N., Gonfa, G., Rahim, A., Ahmad, P., Iqbal, F., Sharif, F., Khan, A. S., Khan, F. U., Khan, Z. U. H., Rehman, F., & Rehman, I. U., (2017). Investigation of ionic liquids as a pretreatment solvent for extraction of collagen biopolymer from waste fish scales using COSMO-RS and experiment. Journal of Molecular Liquids, 232, 258-264, https://doi.org/10.1016/j.molliq.2017.02.083
Nguyen, T. T. V., Anh, N. P., Ho, T. G.-T., Pham, T. T. P., Nguyen, P. H. D., Do, B. L., Huynh, H. K. P., & Nguyen, T. (2022). Hydroxyapatite derived from salmon bone as green ecoefficient support for ceria-doped nickel catalyst for CO2 methanation. ACS Omega, 7(4), 36623−36633. https://doi.org/10.1021/acsomega.2c04621
Naga, S. M., El-Maghraby, H. F., Mahmoud, E. M., Talaat, M. S., & Ibrhim, A. M. (2015). Preparation and characterization of highly porous ceramic scaffolds based on thermally treated fish bone. Ceramics International, 41(10), 15010-15016. https://doi.org/10.1016/j.ceramint.2015.08.057
Onishi, A., Thomas, P. S., Stuart, B. H., Guerbois, J. P., & Forbes, S. L. (2008). TG-MS analysis of the thermal decomposition of pig bone for forensic applications. Journal of Thermal Analysis and Calorimetry, 92, 87-90. https://doi.org/10.1007/s10973-007-8741-0
Othman, R., Mustafa, Z., Loon, C. W., & Noor, A. F. M. (2016). Effect of calcium precursors and pH on the precipitation of carbonated hydroxyapatite. Procedia Chemistry, 19, 539-545. https://doi.org/10.1016/j.proche.2016.03.050
Permatasari, H. A., Wati, R., Anggraini, R. M., Almukarramah, A., & Yusuf, Y., (2020). Hydroxyapatite extracted from fish bone wastes by heat treatment. Key Engineering Materials, 840, 318-323. https://doi.org/10.4028/www.scientific.net/KEM.840.318
Rajesh, R., Hariharasubramanian, A., & Ravichandran, Y. D. (2012). Chicken bone as a bioresource for the bioceramic (hydroxyapatite). Phosphorus, Sulfur, and Silicon and the Related Elements, 187(8), 914-925. https://doi.org/10.1080/10426507.2011.650806
Saikumari, N., Dev, S. M., & Dev, S. A. (2021). Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles. Scientific Reports, 11, Article 1734. https://doi.org/10.1038/s41598-021-80997-z
Shi, P., Liu, M., Fan, F., Yu, C., Lu, W., & Du, M. (2018). Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Materials Science and Engineering C, 90, 706-712. https://doi.org/10.1016/j.msec.2018.04.026
Suneelkumar, C., Datta, K., Srinivasan, M. R., & Kumar, S. T. (2008). Biphasic calcium phosphate in periapical surgery. Journal of Conservative Dentistry, 11(2), 92-96.
Sunil, B. R., & Jagannatham M., (2016). Producing hydroxyapatite from fish bones by heat treatment. Materials Letters, 185, 411-414. https://doi.org/10.1016/j.matlet.2016.09.039
Tri, N., Trang, T.N. D., Trinh, N. H. D., Tung, L.T., Van, N.T. T., Anh, N. P., Tan, N. D., No, N. T. H., & Ha, H. K P. (2020). Hydrothermal and calcination regimes and characteristics of nanohydroxyapatite synthesized from salmon bones. Journal of Biochemical Technology, 11(2), 82-87.
Truite, C. V. R., Noronha, J. N. G., Prado, G. C., Santos, L. N., Palácios, R. S., do Nascimento, A., Volnistem, E. A., Crozatti, T. T. D. S., Francisco, C. P., Sato, F., Weinand, W. R., Hernandes, L., & Matioli, G. (2022). Bioperformance studies of biphasic calcium phosphate scaffolds extracted from fish bones impregnated with free curcumin and complexed with β-cyclodextrin in bone regeneration. Biomolecules, 12(3), Article 383. https://doi.org/10.3390/biom12030383
Venkatesan, J., & Kim, S.-K. (2014). Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review. Journal of Biomedical Nanotechnology, 10(10), 3124-3140. https://doi.org/10.1166/jbn.2014.1893
Wang, K., Zhou, C., Hong, Y., & Zhang, X. (2012). A review of protein adsorption on bioceramics. Interface Focus, 2(3), 259-277. https://doi.org/10.1098/rsfs.2012.0012
Xu, J. L., Khor, K. A., Dong, Z. L., Gu, Y. W., Kumar, R., & Cheang, P. (2004). Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Materials Science and Engineering A, 374(1-2), 101-108. https://doi.org/10.1016/j.msea.2003.12.040
Zhang, Q., Liu, Y., Zhang, Y., Ji, X., Tan, Y., & Liu, Q. (2013). Construction of 3D-ordered hydroxyapatite array structures on Ni foams by Nafion-assisted electrodeposition. Materials Letters, 107, 337-339. https://doi.org/10.1016/j.matlet.2013.06.049
Zhu, Q., Ablikim, Z., Chen, T., Cai, Q., Xia, J., Jiang, D., & Wang, S. (2017). The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceramics International, 43(15) 12213-12220. https://doi.org/10.1016/j.ceramint.2017.06.082