Synthesis and Characterization of Natural HAp/β-TCP Biphasic Calcium Phosphate from Salmon Bone Using a Simplified, Low-cost Technique

Main Article Content

Pensri Pramukkul
Surirat Yotthuan
Aurawan Rittidech
Tawat Suriwong
Theerachai Bongkarn
Chittakorn Kornphom

Abstract

Bioceramics containing biphasic calcium phosphates (BCP) are the preferred material for various bone healing applications. BCP consists of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAp) and offers a balance between solubility and resorption, which promotes cell interaction and tissue growth. There is high demand to synthesize BCP from natural sources using simple and inexpensive methods. This study investigated the effects of calcination temperature on the phase structure, chemical composition, and microstructure of BCP powders synthesized from raw salmon bone (Atlantic salmon) using a simplified, low-cost technique. The successful synthesis of BCP powder from raw salmon bone was confirmed using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The physical and chemical characteristics were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). XRD results revealed the coexistence of HAp and β-TCP phases at calcination temperatures above 600°C for 2 h, indicating the formation of BCP compounds. The relative phase content of HAp and β-TCP changed when the calcination temperature increased from 600 to 1000°C. The crystallite size of HAp and β-TCP increased while the lattice strain decreased as the calcination temperature increased. All samples showed polyhedral lumps of irregular sizes, and the Ca/P ratio decreased from 2.14 to 1.95 with higher calcination temperatures. The FTIR results of all samples revealed the existence of the functional groups of phosphate (PO43-) hydroxyl (OH-) and carbonate (CO32-), which are characteristic of the BCP structure. The optimal phase ratio of HAp/β-TCP at approximately 60:40 was obtained by the samples at a calcination temperature of 800°C. This study reports on a new simplified, low-cost technique to synthesize BCP powder from salmon bone.

Article Details

How to Cite
Pramukkul, P., Yotthuan, S., Rittidech, A., Suriwong, T., Bongkarn, T. ., & Kornphom, C. . (2025). Synthesis and Characterization of Natural HAp/β-TCP Biphasic Calcium Phosphate from Salmon Bone Using a Simplified, Low-cost Technique. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0266155. https://doi.org/10.55003/cast.2025.266155
Section
Original Research Articles

References

Abdulridha, N. J., Al-Ghaban, A. M., & Al-Obaidi, A. J. (2024). Physical and structural properties of biphasic calcium phosphate BCP reinforced with silicene fillers. AIP Conference Proceedings, 3091(1), Article 030003. https://doi.org/10.1063/5.0204640

Afriani, F., Siswoyo, Amelia, R., Hudatwi, M., Zaitun, & Tiandho, Y. (2020). Hydroxyapatite from natural sources: methods and its characteristics. IOP Conference Series: Earth and Environmental Science, 599, Article 012055. https://doi.org/10.1088/1755-1315/599/1/012055

Ahmadi, M., Dini, G., Afshar, M., & Ahmadpour, F. (2022). Synthesis, characterization, and bioactivity evaluation of biphasic calcium phosphate nanopowder containing 5.0 mol% strontium, 0.6 mol% magnesium, and 0.2 mol% silicon for bone regeneration. Journal of Materials Research, 37(11), 1917-1928. https://doi.org/10.1557/s43578-022-00604-3

Berent, K., Komarek, S., Lach, R., & Pyda, W. (2019). The effect of calcination temperature on the structure and performance of nanocrystalline mayenite powders. Materials, 12(21), Article 3476. https://doi.org/10.3390/ma12213476

Bhardwaj, S., Thakur, N., & Kumar, S., (2023). Effect of calcination temperature on structural and electrical properties of K0.5Bi0.5TiO3 ceramics prepared by solid-state route. Bulletin of Materials Science, 46, Article 170. https://doi.org/10.1007/s12034-023-03014-1

Chen, J., Wen, Z., Zhong, S., Wang, Z., Wu, J., & Zhang, Q. (2015). Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion. Materials and Design, 87, 445-449. https://doi.org/10.1016/j.matdes.2015.08.056

Cheng, L., Ye, F., Yang, R., Lu, X., Shi, Y., Li, L., Fan, H., & Bu, H. (2010). Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomaterialia, 6(4), 1569-1574. https://doi.org/10.1016/j.actbio.2009.10.050

de Oliveira, R. S., Brigato, R., Madureira, J. F. G., Cruz, A. A. V., Filho, F. V. D. M., Alonso, N., Machado, H.R. (2007). Reconstruction of a large complex skull defect in a child: a case report and literature review. Child's Nervous System, 23(10), 1097-1102. https://doi.org/10.1007/s00381-007-0413-7

Deng, K., Chen, H., Dou, W., Cai, Q., Wang, X., Wang, S., & Wang, D. (2022a). Preparation and characterization of porous HA/β- TCP biphasic calcium phosphate derived from butterfish bone. Materials Technology, 37(10), 1388-1396. https://doi.org/10.1080/10667857.2021.1950886

Deng, K., Liu, Z., Dou, W., Cai, Q., Ma, W., & Wang, S. (2022b). HA/β-TCP biphasic calcium phosphate ceramics derived from butterfish bones loaded with bone marrow mesenchymal stem cells promote osteogenesis. Frontiers in Materials, 9, Article 928075. https://doi.org/10.3389/fmats.2022.928075

Duta, L., Dorcioman, G., & Grumezescu, V. (2021). A review on biphasic calcium phosphate materials derived from fish discards. Nanomaterials, 11(11), Article 2856. https://doi.org/10.3390/nano11112856

Ebrahimi, M., Botelho, M. G., & Dorozhkin, S. V. (2017). Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Materials Science and Engineering: C Materials for Biological Application, 71, 1293-1312. https://doi.org/10.1016/j.msec.2016.11.039

Gallant, M. A., Brown, D. M., Hammond, M., Wallace, J. M, Du, J., Deymier-Black, A. C., Almer, J. D., Stock, S. R., Allen, M. R., & Burr, D. B. (2014). Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone, 61, 191-200. https://doi.org/10.1016/j.bone.2014.01.009

Iyyappan, E., Wilson, P., Sheela, K., & Ramya, R. (2016). Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods. Materials Science and Engineering: C Materials for Biological Application, 63, 554-562. https://doi.org/10.1016/j.msec.2016.02.076

Komur, B., Altun, E., Aydogdu, M. O., Bilgiç, D., Gokce, H., Ekren, N., Salman, S., Inan, A. T., Oktarh, F. N., & Gunduz, O. (2017), Hydroxyapatite synthesis from fish bones: Atlantic salmon (Salmon Salar). Acta Physica Polonica A, 131(3), 400-402.

Kornphom, C., Saenkam, K., & Bongkarn, T. (2023). Enhanced energy storage properties of BNT–ST–AN relaxor ferroelectric ceramics fabrication by the solid-state combustion technique. Physica status solidi (a), 220(10), Article 2200240. https://doi.org/10.1002/pssa.202200240

Kornphom, C., Saenkam, K., Yotthuan, S., Vittayakorn, N., & Bongkarn, T. (2024). Enhanced electrical and energy storage performances of Fe, Sb co-doped BNBCTS ceramics synthesized via the solid-state combustion technique. Ceramics International, 50(23), 51789-51803. https://doi.org/10.1016/j.ceramint.2024.02.203

Kong, Y.-M., Kim, H.-E., Kim, H.-W. (2008). Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite–tricalcium phosphate biphasic ceramics. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 84(2), 334-339. https://doi.org/10.1002/jbm.b.30876

Kostov-Kytin, V. V., Dyulgerova, E., Ilieva, R, & Petkova, V., (2018). Powder X-ray diffraction studies of hydroxyapatite and β-TCP mixtures processed by high energy dry milling. Ceramics International, 44(7), 8664-8671. https://doi.org/10.1016/j.ceramint.2018.02.094

Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research, 62(4), 600-612. https://doi.org/10.1002/jbm.10280

Larosi, M. B., Saracho, J. M. P., Pineiro, R. C., Rodriguez, F. L., & Fong, B. M. L. (2009). Biphasic calcium phosphate and method for obtaining same from fish bones. EP 2,075,231 A1. European Patent Office.

Latif, A. F. A., Mohd Pu’ad, N. A. S., Ramli, N. A. A., Muhamad, M. S., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2020). Extraction of biological hydroxyapatite from tuna fish bone for biomedical applications. Materials Science Forum, 1010, 584-589. https://doi.org/10.4028/www.scientific.net/msf.1010.584

Lolo, J. A., Ambali, D. P. P., Jefriyanto, W., Handayani, D., Afridah, W., Wikurendra, E. A., Amalia, R., & Syafiuddin, A. (2022). Synthesis and characterization of hydroxyapatite derived from milkfish bone by simple heat treatments. Biointerface Research in Applied Chemistry, 12(2), 2440-2449. https://doi.org/10.33263/BRIAC122.24402449

Liou, S.-C., Chen, S.-Y., Lee, H.-Y., & Bow, J.-S. (2004). Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials, 25(2), 189-196. https://doi.org/10.1016/S0142-9612(03)00479-4

Malakausaite-Petruleviciene, M., Stankeviciute, Z., Niaura, G., Prichodko, A., & Kareiva, A. (2015). Synthesis and characterization of sol–gel derived calcium hydroxyapatite thin films spin-coated on silicon substrate. Ceramics International, 41(6), 7421-7428. https://doi.org/10.1016/j.ceramint.2015.02.055

Motskin, M., Wright, D. M., Muller, K., Kyle, N., Gard, T. G., Porter, A. E., & Skepper, J. N. (2009). Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials, 30(19), 3307-3317. https://doi.org/10.1016/j.biomaterials.2009.02.044

Muhammad, N., Gonfa, G., Rahim, A., Ahmad, P., Iqbal, F., Sharif, F., Khan, A. S., Khan, F. U., Khan, Z. U. H., Rehman, F., & Rehman, I. U., (2017). Investigation of ionic liquids as a pretreatment solvent for extraction of collagen biopolymer from waste fish scales using COSMO-RS and experiment. Journal of Molecular Liquids, 232, 258-264, https://doi.org/10.1016/j.molliq.2017.02.083

Nguyen, T. T. V., Anh, N. P., Ho, T. G.-T., Pham, T. T. P., Nguyen, P. H. D., Do, B. L., Huynh, H. K. P., & Nguyen, T. (2022). Hydroxyapatite derived from salmon bone as green ecoefficient support for ceria-doped nickel catalyst for CO2 methanation. ACS Omega, 7(4), 36623−36633. https://doi.org/10.1021/acsomega.2c04621

Naga, S. M., El-Maghraby, H. F., Mahmoud, E. M., Talaat, M. S., & Ibrhim, A. M. (2015). Preparation and characterization of highly porous ceramic scaffolds based on thermally treated fish bone. Ceramics International, 41(10), 15010-15016. https://doi.org/10.1016/j.ceramint.2015.08.057

Onishi, A., Thomas, P. S., Stuart, B. H., Guerbois, J. P., & Forbes, S. L. (2008). TG-MS analysis of the thermal decomposition of pig bone for forensic applications. Journal of Thermal Analysis and Calorimetry, 92, 87-90. https://doi.org/10.1007/s10973-007-8741-0

Othman, R., Mustafa, Z., Loon, C. W., & Noor, A. F. M. (2016). Effect of calcium precursors and pH on the precipitation of carbonated hydroxyapatite. Procedia Chemistry, 19, 539-545. https://doi.org/10.1016/j.proche.2016.03.050

Permatasari, H. A., Wati, R., Anggraini, R. M., Almukarramah, A., & Yusuf, Y., (2020). Hydroxyapatite extracted from fish bone wastes by heat treatment. Key Engineering Materials, 840, 318-323. https://doi.org/10.4028/www.scientific.net/KEM.840.318

Rajesh, R., Hariharasubramanian, A., & Ravichandran, Y. D. (2012). Chicken bone as a bioresource for the bioceramic (hydroxyapatite). Phosphorus, Sulfur, and Silicon and the Related Elements, 187(8), 914-925. https://doi.org/10.1080/10426507.2011.650806

Saikumari, N., Dev, S. M., & Dev, S. A. (2021). Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles. Scientific Reports, 11, Article 1734. https://doi.org/10.1038/s41598-021-80997-z

Shi, P., Liu, M., Fan, F., Yu, C., Lu, W., & Du, M. (2018). Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Materials Science and Engineering C, 90, 706-712. https://doi.org/10.1016/j.msec.2018.04.026

Suneelkumar, C., Datta, K., Srinivasan, M. R., & Kumar, S. T. (2008). Biphasic calcium phosphate in periapical surgery. Journal of Conservative Dentistry, 11(2), 92-96.

Sunil, B. R., & Jagannatham M., (2016). Producing hydroxyapatite from fish bones by heat treatment. Materials Letters, 185, 411-414. https://doi.org/10.1016/j.matlet.2016.09.039

Tri, N., Trang, T.N. D., Trinh, N. H. D., Tung, L.T., Van, N.T. T., Anh, N. P., Tan, N. D., No, N. T. H., & Ha, H. K P. (2020). Hydrothermal and calcination regimes and characteristics of nanohydroxyapatite synthesized from salmon bones. Journal of Biochemical Technology, 11(2), 82-87.

Truite, C. V. R., Noronha, J. N. G., Prado, G. C., Santos, L. N., Palácios, R. S., do Nascimento, A., Volnistem, E. A., Crozatti, T. T. D. S., Francisco, C. P., Sato, F., Weinand, W. R., Hernandes, L., & Matioli, G. (2022). Bioperformance studies of biphasic calcium phosphate scaffolds extracted from fish bones impregnated with free curcumin and complexed with β-cyclodextrin in bone regeneration. Biomolecules, 12(3), Article 383. https://doi.org/10.3390/biom12030383

Venkatesan, J., & Kim, S.-K. (2014). Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review. Journal of Biomedical Nanotechnology, 10(10), 3124-3140. https://doi.org/10.1166/jbn.2014.1893

Wang, K., Zhou, C., Hong, Y., & Zhang, X. (2012). A review of protein adsorption on bioceramics. Interface Focus, 2(3), 259-277. https://doi.org/10.1098/rsfs.2012.0012

Xu, J. L., Khor, K. A., Dong, Z. L., Gu, Y. W., Kumar, R., & Cheang, P. (2004). Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Materials Science and Engineering A, 374(1-2), 101-108. https://doi.org/10.1016/j.msea.2003.12.040

Zhang, Q., Liu, Y., Zhang, Y., Ji, X., Tan, Y., & Liu, Q. (2013). Construction of 3D-ordered hydroxyapatite array structures on Ni foams by Nafion-assisted electrodeposition. Materials Letters, 107, 337-339. https://doi.org/10.1016/j.matlet.2013.06.049

Zhu, Q., Ablikim, Z., Chen, T., Cai, Q., Xia, J., Jiang, D., & Wang, S. (2017). The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceramics International, 43(15) 12213-12220. https://doi.org/10.1016/j.ceramint.2017.06.082