Isolation, Screening, and Molecular Identification of Plant Growth-Promoting Rhizobacteria from Maize Rhizosphere Soil
Main Article Content
Abstract
The biotechnological relevance of rhizosphere microbiomes with diverse mechanisms underlining their survival under harsh environments for improved plant nutrition and resilience against drought and phytopathogens cannot be over-emphasized. We aimed to isolate, screen, and molecularly identify plant growth-promoting bacteria from the maize soil sourced from different farmlands in the coastline areas of Ondo State, Nigeria. The bacteria isolated were identified molecularly using 16S rRNA gene sequencing. Twenty culturable bacterial isolates were subjected to plant growth-promoting screening, biocontrol test, and drought, heavy metals [lead (PbSO4), cadmium (CdSO4), zinc (ZnSO4), and copper (CuSO4)], and salt (NaCl) tolerance tests. The three bacteria with positive results for the tests were selected and identified as Serratia marcescens BSE_1, Bacillus cereus BSA_1, and Proteus mirabilis BSI_1. P. mirabilis BSI_1 exhibited biocontrol activities of 2.9 mm against the pathogenic fungus, Sclerotium rolfsii, and high tolerance of 41% and 46% to ZnSO4 and CdSO4 at 0.1% and 0.2%, respectively. The high PbSO4 tolerance of 89% and CuSO4 tolerance of 98% by S. marcescens BSE_1 and B cereus BSA_1 were recorded in an inoculated medium supplemented with 0.3% PbSO4 and CuSO4. The high salt (NaCl) tolerance of 76% at 0.1% and 0.2% were recorded for B. cereus BSA_1, and P. mirabilis BSI_1 compared to the control. The experimental trials involving greenhouse and field bioinoculation showed a significant effect of mixed drought-tolerant bacteria on maize growth compared to the control. Therefore, harnessing these rhizobacteria as bioinoculants to maximize coastal agricultural productivity can help ensure food security.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abd-Alla, M. H., Nafady, N. A., Bashandy, S. R., & Hassan, A. A. (2019). Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere, 10, Article 100148. https://doi.org/10.1016/j.rhisph.2019.100148
Adeleke, B. S., Ayangbenro, A. S., & Babalola, O. O. (2022). In vitro screening of sunflower associated endophytic bacteria with plant growth-promoting traits. Frontiers in Sustainable Food Systems, 6, Article 903114. https://doi.org/10.3389/fsufs.2022.903114
Adeleke, B. S., Babalola, O. O., & Glick, B. R. (2021). Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere, 20, Article 100433. https://doi.org/10.1016/j.rhisph.2021.100433
Adeleke, B. S., Chaudhary, P., Ayilara, M. S., Ojo, F. M., Erinoso, S. M., Upadhayay, V. K., Adeyemo, A. I., & Akinola, S. A. (2024). Rhizosphere microbiomes mediating abiotic stress mitigation for improved plant nutrition. Ecologies, 5(3), 375-401. https://doi.org/10.3390/ecologies5030024
Adeniji, A. A., Ayangbenro, A. S., & Babalola, O. O. (2021). Genomic exploration of Bacillus thuringiensis MORWBS1. 1-candidate biocontrol agent, predicts genes for biosynthesis of zwittermicin, 4, 5-DOPA dioxygenase extradiol, and quercetin 2, 3-dioxygenase. Molecular Plant-Microbe Interactions, 34, 602-605. https://doi.org/10.1094/MPMI-10-20-0272-SC
Agbodjato, N. A., Noumavo, P. A., Baba-Moussa, F., Salami, H. A., Sina, H., Sèzan, A., Bankolé, H., Adjanohoun, A., & Baba-Moussa, L. (2015). Characterization of potential plant growth promoting rhizobacteria isolated from Maize (Zea mays L.) in central and Northern Benin (West Africa). Applied and Environmental Soil Science, 2015, Article 901656. https://doi.org/10.1155/2015/901656
Agunbiade, V. F., Fadiji, A. E., Agbodjato, N. A., & Babalola, O. O. (2024). Isolation and characterization of plant-growth-promoting, drought-tolerant rhizobacteria for improved maize productivity. Plants, 13(10), Article 1298. https://doi.org/10.3390/plants13101298
Akanmu, A. O., Babalola, O. O., Venturi, V., Ayilara, M. S., Adeleke, B. S., Amoo, A. E., Sobowale, A. A., Fadji, A. E., & Glick, B. R. (2021). Plant disease management: Leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Frontiers in Plant Science, 12, Article 1590. https://doi.org/10.3389/fpls.2021.700507
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. https://doi.org/10.1093/nar/25.17.3389
Anusha, P., & Natarajan, D. (2020). Bioremediation potency of multi metal tolerant native bacteria Bacillus cereus isolated from bauxite mines, kolli hills, Tamilnadu-a lab to land approach. Biocatalysis and Agricultural Biotechnology, 25, Article 101581. https://doi.org/10.1016/j.bcab.2020.101581
Arruda, L., Beneduzi, A., Martins, A., Lisboa, B., Lopes, C., Bertolo, F., Passaglia, L. M. P., & Vargas, L. K. (2013). Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Applied Soil Ecology, 63, 15-22. https://doi.org/10.1016/j.apsoil.2012.09.001
Ayilara, M. S., Adeleke, B. S., & Babalola, O. O. (2022). Bioprospecting and challenges of plant microbiome research for sustainable agriculture, a review on soybean endophytic bacteria. Microbial Ecology, 85, 1113-1135. https://doi.org/10.1007/s00248-022-02136-z
Babalola, O. O., Adeleke, B. S., & Ayangbenro, A. S. (2021). Whole genome sequencing of sunflower root-associated Bacillus cereus. Evolutionary Bioinformatics, 17, 1-6. https://doi.org/10.1177/11769343211038948
Babu, S. V., Gopal, A. V., Trimurtulu, N., Babu, G. K., & Bhattiprolu, S. (2024). Efficacy of silica solubilizing bacteria as plant growth promoting rhizobacteria and their biochemical characteristics. International Journal of Environment and Climate Change, 14(6), 199-210. https://doi.org/10.9734/ijecc/2024/v14i64221
Barbetti, M. J., Banga, S. S., & Salisbury, P. A. (2012). Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios – Case study with oilseed Brassicas. Field Crops Research, 127, 225-240. https://doi.org/10.1016/j.fcr.2011.11.021
Belabess, Z., Gajjout, B., Legrifi, I., Barka, E. A., & Lahlali, R. (2024). Exploring the antifungal activity of Moroccan bacterial and fungal isolates and a Strobilurin fungicide in the control of Cladosporium fulvum, the causal agent of tomato leaf mold disease. Plants, 13(16), Article 2213. https://doi.org/10.3390/plants13162213
Beshah, A., Muleta, D., Legese, G., & Assefa, F. (2024). Exploring stress-tolerant plant growth-promoting rhizobacteria from groundnut rhizosphere soil in semi-arid regions of Ethiopia. Plant Signaling and Behavior, 19(1), Article 2365574. https://doi.org/10.1080/15592324.2024.2365574
Chaudhary, P., Parveen, H., Gangola, S., Kumar, G., Bhatt, P., & Chaudhary, A. (2021).Plant growth-promoting rhizobacteria and their application in sustainable crop production. In P. Bhatt, S. Gangola, D. Udayanga, & G. Kumar (Eds.). Microbial technology for sustainable environment (pp. 217-234). Springer. https://doi.org/10.1007/978-981-16-3840-4_13
Chaudhary, S., Dhanker, R., Singh, K., Brar, B., & Goyal, S. (2022). Characterization of sulfur‐oxidizing bacteria isolated from mustard (Brassica juncea L.) rhizosphere having the capability of improving sulfur and nitrogen uptake. Journal of Applied Microbiology, 133(5), 2814-2825. https://doi.org/10.1111/jam.15742
Chen, X., Zhao, Y., Huang, S., Peñuelas, J., Sardans, J., Wang, L., & Zheng, B. (2024). Genome-based identification of phosphate-solubilizing capacities of soil bacterial isolates. AMB Express, 14(1), Article 85. https://doi.org/10.1186/s13568-024-01745-w
Clarke, P. H., & Cowan, S. (1952). Biochemical methods for bacteriology. Microbiology, 6, 187-197. https://doi.org/10.1099/00221287-6-1-2-187
Cui, W., He, P., Munir, S., He, P., Li, X., Li, Y., Wu, J., Wu, Y., Yang, L., He, P., & He, Y. (2019). Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601-Y2 for biocontrol of southern corn leaf blight. Biological Control, 139, Article 104080. https://doi.org/10.1016/j.biocontrol.2019.104080
Dhole, A. M., Shelat, H. N., Patel, H. K., & Jhala, Y. K. (2023). Evaluation of the co-inoculation Effect of Rhizobium and plant growth promoting non-rhizobial endophytes on Vigna radiata. Current Microbiology, 80(5), Article 167. https://doi.org/10.1007/s00284-023-03266-4
Ding, Y., Wang, J., Liu, Y., & Chen, S. (2005). Isolation and identification of nitrogen‐fixing bacilli from plant rhizospheres in Beijing region. Journal of Applied Microbiology, 99(5), 1271-1281. https://doi.org/10.1111/j.1365-2672.2005.02738.x
Efthimiadou, A., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N., & Katsaros, G. (2020). Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific Reports, 10(1), Article 21060. https://doi.org/10.1038/s41598-020-78034-6
Farhaoui, A., Adadi, A., Tahiri, A., El Alami, N., Khayi, S., Mentag, R., Ezrari, S., Radouane, N., Mokrini, F., Belabess, Z., & Lahlali, R. (2022). Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L.). Physiological and Molecular Plant Pathology, 119, Article 101829. https://doi.org/10.1016/j.pmpp.2022.101829
Fasusi, O. A., Amoo, A. E., & Babalola, O. O. (2021). Characterization of plant growth-promoting rhizobacterial isolates associated with food plants in South Africa. Antonie Van Leeuwenhoek, 114(10), 1683-1708. https://doi.org/10.1007/s10482-021-01633-4
Gamalero, E., & Glick, B. R. (2022). Recent advances in bacterial amelioration of plant drought and salt stress. Biology, 11(3), Article 437. https://doi.org/10.3390/biology11030437
Ghanem, M., Kamal, O., & Said, A. F. (2024). Plant growth-promoting rhizobacteria: selective screening and characterization of drought-tolerant bacteria from drought-prone soils. Novel Research in Microbiology Journal, 8(3), 2469-2490. https://doi.org/10.21608/nrmj.2024.293974.1607
Ghazy, N., & El-Nahrawy, S. (2021). Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Archives of Microbiology, 203(3), 1195-1209. https://doi.org/10.1007/s00203-020-02113-5
Ghorchiani, M., Etesami, H., & Alikhani, H. A. (2018). Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agriculture, Ecosystems and Environment, 258, 59-70. https://doi.org/10.1016/j.agee.2018.02.016
Gomez-Ramirez, L. F., & Uribe-Velez, D. (2021). Phosphorus solubilizing and mineralizing Bacillus spp contribute to rice growth promotion using soil amended with rice straw. Current Microbiology, 78, 932-943. https://doi.org/10.1007/s00284-021-02354-7
Igiehon, N. O., Babalola, O. O., & Aremu, B. R. (2019). Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiology, 19(1), Article 159. https://doi.org/10.1186/s12866-019-1536-1
Jangra, A., Kumar, K., Maikhuri, S., Bhandari, M. S., Pandey, S., Singh, H., & Barthwal, S. (2024). Unveiling stress-adapted endophytic bacteria: characterizing plant growth-promoting traits and assessing cross-inoculation effects on Populus deltoides under abiotic stress. Plant Physiology and Biochemistry, 210, Article 108610. https://doi.org/10.1016/j.plaphy.2024.108610
Ke, X., Feng, S., Wang, J., Lu, W., Zhang, W., Chen, M., & Lin, M. (2019). Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Systematic and Applied Microbiology, 42(2), 248-260. https://doi.org/10.1016/j.syapm.2018.10.010
Khan, N., & Mehmood, A. (2023). Revisiting climate change impacts on plant growth and its mitigation with plant growth promoting rhizobacteria. South African Journal of Botany, 160, 586-601. https://doi.org/10.1016/j.sajb.2023.07.051
Kifle, M. H., & Laing, M. D. (2016). Isolation and screening of bacteria for their diazotrophic potential and their influence on growth promotion of maize seedlings in greenhouses. Frontiers in Plant Science, 6, Article 1225. https://doi.org/10.3389/fpls.2015.01225
Korir, H., Mungai, N. W., Thuita, M., Hamba, Y., & Masso, C. (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, 8, Article 141. https://doi.org/10.3389/fpls.2017.00141
Kuan, K. B., Othman, R., Rahim, K. A., & Shamsuddin, Z. H. (2016). Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PloS ONE, 11(3), Article e0152478. https://doi.org/10.1371/journal.pone.0152478
Kulkova, I., Wróbel, B., & Dobrzyński, J. (2024). Serratia spp. as plant growth-promoting bacteria alleviating salinity, drought, and nutrient imbalance stresses. Frontiers in Microbiology, 15, Article 1342331. https://doi.org/10.3389/fmicb.2024.1342331
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), Article 1547. https://doi.org/10.1093/molbev/msy096
Kumari, S., Prabha, C., Singh, A., Kumari, S., & Kiran, S. (2018). Optimization of indole-3-acetic acid production by diazotrophic B. subtilis DR2 (KP455653), isolated from rhizosphere of Eragrostis cynosuroides. International Journal of Pharma, Medical and Biological Sciences, 7(2), 20-27. https://doi.org/10.18178/ijpmbs.7.2.20-27
Lebrazi, S., Niehaus, K., Bednarz, H., Fadil, M., Chraibi, M., & Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Journal of Genetic Engineering and Biotechnology, 18(1), Article 71. https://doi.org/10.1186/s43141-020-00090-2
Lee, S., Kim, J.-A., Song, J., Choe, S., Jang, G., & Kim, Y. (2024). Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice (Oryza sativa L.) from drought. Frontiers in Microbiology, 15, Article 1430546. https://doi.org/10.3389/fmicb.2024.1430546
Ma, Q., Sun, X., Gong, S., & Zhang, J. (2010). Screening and identification of a highly lipolytic bacterial strain from barbecue sites in Hainan and characterization of its lipase. Annals of Microbiology, 60, 429-437. https://doi.org/10.1007/s13213-010-0060-1
Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., Bisht, J. K., Pattanayak, A., Naveed, M., & Dotaniya, M. L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, 107, 8-32. https://doi.org/10.1016/j.ecoleng.2017.06.058
Mehmood, N., Saeed, M., Zafarullah, S., Hyder, S., Rizvi, Z. F., Gondal, A. S., Jamil, N., Igbal, R., Ali, B., Ercisli, S., & Kupe, M. (2023). Multifaceted impacts of plant-beneficial Pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS Omega, 8(25), 22296-22315. https://doi.org/10.1021/acsomega.3c00870
Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Nazim, M., Liu, Y.-H., & Li, W.-J. (2023). Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 11, Article 100319. https://doi.org/10.1016/j.stress.2023.100319
Muleta, A., Tesfaye, K., Selassie, T. H. H., Cook, D. R., & Assefa, F. (2021). Phosphate solubilization and multiple plant growth promoting properties of Mesorhizobium species nodulating chickpea from acidic soils of Ethiopia. Archives of Microbiology, 203, 2129-2137. https://doi.org/10.1007/s00203-021-02189-7
Naseem, M., Chaudhry, A. N., Jilani, G., Alam, T., Naz, F., Ullah, R., Zahoor, M., Zaman, S., & Sohail. (2024). Exopolysaccharide-producing bacterial cultures of Bacillus cereus and Pseudomonas aeruginosa in soil augment water retention and maize growth. Heliyon, 10(4), Article e26104. https://doi.org/10.1016/j.heliyon.2024.e26104
Noori, F., Etesami, H., Noori, S., Forouzan, E., Jouzani, G. S., & Malboobi, M. A. (2021). Whole genome sequence of Pantoea agglomerans ANP8, a salinity and drought stress–resistant bacterium isolated from alfalfa (Medicago sativa L.) root nodules. Biotechnology Reports, 29, Article e00600. https://doi.org/10.1016/j.btre.2021.e00600
Oyedoh, O. P., Yang, W., Dhanasekaran, D., Santoyo, G., Glick, B. R., & Babalola, O. O. (2023). Rare rhizo-Actinomycetes: A new source of agroactive metabolites. Biotechnology Advances, 67, Article 108205. https://doi.org/10.1016/j.biotechadv.2023.108205
Parvin, N., Mukherjee, B., Roy, S., & Dutta, S. (2023). Characterization of plant growth promoting rhizobacterial strain Bacillus cereus with special reference to exopolysaccharide production. Journal of Plant Nutrition, 46(11), 2608-2620. https://doi.org/10.1080/01904167.2022.2160740
Patel, S. K., Singh, S., Benjamin, J., Singh, V., Bisht, D., & Lal, R. (2024). Plant growth-promoting activities of Serratia marcescens and Pseudomonas fluorescens on Capsicum annuum L. plants. Ecological Frontiers, 44(4), 654-663. https://doi.org/10.1016/j.ecofro.2024.01.002
Peng, J., Ma, J., Wei, X., Zhang, C., Jia, N., Wang, X., Wang, E. T., Hu, D., & Wang, Z. (2021). Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria. Annals of Microbiology, 71, Article 40. https://doi.org/10.1186/s13213-021-01650-8
Prasad, J., Dey, R., & Raghuwanshi, R. (2022). Exopolysaccharide-producing rhizospheric bacteria enhance yield via promoting wheat (Triticum aestivum L.) growth at early stages. Microbiology, 91(6), 757-769. https://doi.org/10.1134/S0026261721102622
Qaisrani, M. M., Zaheer, A., Mirza, M. S., Naqqash, T., Qaisrani, T. B., Hanif, M. K., Rasool, G., Malik, K. A., Ullah, S., Jamal, M. S., Mirza, Z., Karim, S., & Rasool, M. (2019). A comparative study of bacterial diversity based on culturable and culture-independent techniques in the rhizosphere of maize (Zea mays L.). Saudi Journal of Biological Sciences, 26(7), 1344-1351. https://doi.org/10.1016/j.sjbs.2019.03.010
Rasool, A., Mir, M. I., Zulfajri, M., Hanafiah, M. M., Unnisa, S. A., & Mahboob, M. (2021). Plant growth promoting and antifungal asset of indigenous rhizobacteria secluded from saffron (Crocus sativus L.) rhizosphere. Microbial Pathogenesis, 150, Article 104734. https://doi.org/10.1016/j.micpath.2021.104734
Ríos-Ruiz, W. F., Tarrillo-Chujutalli, R. E., Rojas-García, J. C., Tuanama-Reátegui, C., Pompa-Vásquez, D. F., & Zumaeta-Arévalo, C. A. (2024). The biotechnological potential of plant growth-promoting rhizobacteria isolated from maize (Zea mays L.) cultivations in the San Martin Region, Peru. Plants, 13(15), Article 2075. https://doi.org/10.3390/plants13152075
Santos, K. F. D. N., Moure, V. R., Hauer, V., Santos, A. R. S., Donatti, L., Galvão, C. W., Pedrosa, F. O., Souza, E. M., Wassem, R., & Steffens, M. B. R. (2017). Wheat colonization by an Azospirillum brasilense ammonium-excreting strain reveals upregulation of nitrogenase and superior plant growth promotion. Plant and Soil, 415, 245-255. https://doi.org/10.1007/s11104-016-3140-6
Sehrawat, A., Sindhu, S. S., & Glick, B. R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 32(1), 15-38. https://doi.org/10.1016/S1002-0160(21)60058-9
Sharma, P., Pandey, R., & Chauhan, N. S. (2024). Unveiling wheat growth promotion potential of phosphate solubilizing Pantoea agglomerans PS1 and PS2 through genomic, physiological, and metagenomic characterizations. Frontiers in Microbiology, 15, Article 1467082. https://doi.org/10.3389/fmicb.2024.1467082
Shin, H.-Y., Kim, D.-S., Lee, C.-H., Lee, D.-S., & Han, S.-I. (2024). Isolation and characterization of plant growth promoting bacteria Pseudomonas sp. SH-26 from peat soil. Journal of the Korean Applied Science and Technology, 41(2), 199-207. https://doi.org/10.12925/jkocs.2024.41.2.199
Silva, E. R., Zoz, J., Oliveira, C. E. S., Zuffo, A. M., Steiner, F., Zoz, T., & Vendruscolo, E. P. (2019). Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)? Archives of Microbiology, 201(3), 325-335. https://doi.org/10.1007/s00203-018-01617-5
Singh, R. K., Singh, P., Li, H.-B., Song, Q.-Q., Guo, D.-J., Solanki, M. K., Verma, K. K., Malviya, M. K., Song, X.-P., Lakshmanan, P., Yang, L.-T., & Li, Y.-R. (2020). Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology, 20(1), Article 220. https://doi.org/10.1186/s12870-020-02400-9
Solórzano‐Acosta, R. A., & Quispe, K. R. (2024). Assessing the role of field isolated Pseudomonas and Bacillus as growth‐promoting rizobacteria on avocado (Persea americana) seedlings. Journal of Sustainable Agriculture and Environment, 3(3), Article e12114. https://doi.org/10.1002/sae2.12114
Soni, R., Rawal, K., & Keharia, H. (2021). Genomics assisted functional characterization of Paenibacillus polymyxa HK4 as a biocontrol and plant growth promoting bacterium. Microbiological Research, 248, Article 126734. https://doi.org/10.1016/j.micres.2021.126734
Świątczak, J., Kalwasińska, A., & Brzezinska, M. S. (2024). Plant growth–promoting rhizobacteria: Peribacillus frigoritolerans 2RO30 and Pseudomonas sivasensis 2RO45 for their effect on canola growth under controlled as well as natural conditions. Frontiers in Plant Science, 14, Article 1233237. https://doi.org/10.3389/fpls.2023.1233237
Tirry, N., Ferioun, M., Kouchou, A., Laghmari, G., Asri, M., Zouitane, I., Bahafid, W., El Omari, B., & El Ghachtouli, N. (2024). Plant growth-promoting rhizobacteria’s (PGPR) effects on Medicago sativa growth, arbuscular mycorrhizal colonisation, and soil enzyme activities. International Journal of Environmental Studies, 81(3), 1190-1208. https://doi.org/10.1080/00207233.2023.2216606
Umapathi, M., Chandrasekhar, C. N., Senthil, A., Kalaiselvi, T., Santhi, R., & Ravikesavan, R. (2022). Isolation, characterization and plant growth-promoting effects of sorghum [Sorghum bicolor (L.) moench] root-associated rhizobacteria and their potential role in drought mitigation. Archives of Microbiology, 204(6), Article 354. https://doi.org/10.1007/s00203-022-02939-1
Wang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. (2021). Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, 9(9), Article 1988. https://doi.org/10.3390/microorganisms9091988
Wu, S., Wu, K., Shi, L., Sun, X., Tan, Q., & Hu, C. (2023). Recruitment of specific microbes through exudates affects cadmium activation and accumulation in Brassica napus. Journal of Hazardous Materials, 442, Article 130066. https://doi.org/10.1016/j.jhazmat.2022.130066
Zafar-ul-Hye, M., Danish, S., Abbas, M., Ahmad, M., & Munir, T. M. (2019). ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy, 9(7), Article 343. https://doi.org/10.3390/agronomy9070343
Zhiyong, S., Yaxuan, G., Yuanyuan, W., Xiang, Y., Xu, G., Zhenhong, L., Jingping, N., Jianping, L., & Zhenyu, L. (2024). Nitrogen-fixing bacteria promote growth and bioactive components accumulation of Astragalus mongholicus by regulating plant metabolism and rhizosphere microbiota. BMC Microbiology, 24(1), Article 261. https://doi.org/10.1186/s12866-024-03409-y