Assimilate Partitioning and Agronomic Performance of Floating Rice in Flood-Prone Ecosystems of Indonesia
Main Article Content
Abstract
Rice cultivation in flood-prone areas often results in a decrease in yield and crop failure. The Floating Rice Field (FRF) method is a strategy to increase plant resilience while improving rice production in flood-prone areas. The choice of the right seedling makes it easier for plants to adapt to the FRF method, improving physiological traits, growth, and yield. The aim of this research was to investigate the effects of seedling age on the agronomic performance and assimilate partitioning of rice planted using the FRF method in the flood-prone areas. A field experiment was conducted in Pangandaran, Indonesia. The study was arranged as a 2x2 factorial randomized complete block design with seedling age (14 DAS and 21 DAS) as the first factor and rice variety (Inpari 3 and Inpari 30 Ciherang Sub 1) as the second factor with four replications. There was no interaction between seedling age and rice variety for all parameters observed. Seedling age significantly affected total chlorophyll, plant height, number of grains per panicle, percentage of filled grain, and harvest yield. Furthermore, rice variety only affected plant height and harvest yield. Although 21 DAS resulted in higher plants, 14 DAS showed better physiological performance and productivity. Specifically, 14 DAS seedlings had higher total chlorophyll content, more grains per panicle, a greater percentage of filled grain, and higher harvest yield. The Inpari 3 rice variety produced lower plant growth and harvest yield than Inpari 30 Ciherang Sub 1 rice variety. In correlation analysis, total chlorophyll content caused an increase in the percentage of filled grain and harvest yield (r= 0.53 and r= 0. 28), while plant height caused a decrease in harvest yield (r= -0.30).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Afrinda, R., & Kurniasih, B. (2021). Effect of seedling age on growth and yield of two rice (Oryza sativa L.) varieties transplanted in saline coastal area of Baros, Yogyakarta. Ilmu Pertanian (Agricultural Science), 6(1), 38-46. https://doi.org/10.22146/ipas.38107
Anandan, A., Pradhan, S. K., Das, S. K., Behera, L., & Sangeetha, G. (2015). Differential responses of rice genotypes and physiological mechanism under prolonged deepwater flooding. Field Crops Research, 172(1), 153-163. https://doi.org/10.1016/j.fcr.2014.11.007
Andrews, M., & Raven, J. A. (2022). Root or shoot nitrate assimilation in terrestrial vascular plants - does it matter? Plant and Soil, 476(1-2), 31-62. https://doi.org/10.1007/s11104-021-05164-9
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyhenoloxidases in Beta vulgari. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
Bayabil, H. K., Li, Y., Tong, Z., & Gao, B. (2021). Potential management practices of saltwater intrusion impacts on soil health and water quality: a review. Journal of Water and Climate Change, 12(5), 1327-1343. https://doi.org/10.2166/wcc.2020.013
Bin, L., Jin, H., Li, W., Jin, L., Yueyang, L., & Ji, C. (2020). A review on how plant hormones and environment factors are involved in rice root hair development. Chinese Journal of Rice Science, 34(4), 287-299.
Bouteillé, M., Rolland, G., Balsera, C., Loudet, O., & Muller, B. (2012). Disentangling the intertwined genetic bases of root and shoot growth in arabidopsis. PLoS ONE, 7(2), Article e32319. https://doi.org/10.1371/journal.pone.0032319
Bui, L. T., Ella, E. S., Dionisio-Sese, M. L., & Ismail, A. M. (2019). Morpho-physiological changes in roots of rice seedling upon submergence. Rice Science, 26(3), 167-177. https://doi.org/10.1016/j.rsci.2019.04.003
Cao, J., Li, X., Wang, F., Huang, J., & Peng, S. (2022). The responses of yield performance to seedling ages with varied seedling or transplanting dates of middle-season rice in Central China. Journal of Plant Growth Regulation, 41(8), 3153-3168. https://doi.org/10.1007/s00344-021-10502-3.
Chen, Y., Song, J., Yan, C., & Hong, X. (2021a). Effects of submergence stress at the vegetative growth stage on hybrid rice growth and grain yield in China. Chilean Journal of Agricultural Research, 81(2), 191-201. https://doi.org/10.4067/S0718-58392021000200191
Chen, Y., Wei, J. L., Zhang, Y. J., Li, G. M., Lu, B., & Liu, L. J. (2021b). Control of plant height by heterotrimetric g-protein alpha subunit in rice. Journal of Animal and Plant Sciences, 31(5), 1217-1227. https://doi.org/10.36899/JAPS.2021.5.0321
Fei, L., Pan, Y., Ma, H., Guo, R., Wang, M., Ling, N., Shen, Q., & Guo, S. (2024). Optimal organic-inorganic fertilization increases rice yield through source-sink balance during grain filling. Field Crops Research, 308, Article 109285. https://doi.org/10.1016/j.fcr.2024.109285
Fukai, S., & Mitchell, J. (2024). Grain yield and protein concentration relationships in rice. Crop and Environment, 3(1), 12-24. https://doi.org/10.1016/j.crope.2023.11.002
Gan, L., Han, L., Yin, S., & Jiang, Y. (2020). Chlorophyll metabolism and gene expression in response to submergence stress and subsequent recovery in perennial ryegrass accession differing in growth habits. Journal of Plant Physiology, 251, Article 153195. https://doi.org/10.1016/j.jplph.2020.153195
Gao, B., Hu, S., Jing, L., Niu, X., Wang, Y., Zhu, J., Wang, Y., & Yang, L. (2021). Alterations in source-sink relations affect rice yield response to elevated CO2: a free-air CO2 enrichment study. Frontiers in Plant Science, 12, Article 700159. https://doi.org/10.3389/fpls.2021.700159
Gui, G., Zhang, Q., Hu, W., & Liu, F. (2024). Application of multiomics analysis to plant flooding response. Frontiers in Plant Science, 15, Article 1389379. https://doi.org/10.3389/fpls.2024/1389379
Hairani, A., Noor, M., Alwi, M., Saleh, M., Rina, Y., Khairullah, I., Sosiawan, H., Heryani, N., Mukhlis, M., & Lenin, I. (2024). Freshwater swampland as flood buffer during El Niño: case study in South Kalimantan, Indonesia. Chilean Journal of Agricultural Research, 84(1), 132-143. https://doi.org/10.4067/S0718-58392024000100132
Haque, A. M., Rahman, D., & Rahman, H. M. (2016). The importance of community based approach to reduce sea level rise vulnerability and enhance resilience capacity in the coastal areas of Bangladesh: A review. Journal of Sustainability Science and Management, 11(2), 81-100.
He, H., Hu, C., Xu, H., Yang, R., You, C., Ke, J., Zhang, Q., & Wu, L. (2024). High yield, good eating quality, and high N use efficiency for medium hybrid indica rice: from the perspective of balanced source-sink relationships at heading. European Journal of Agronomy, 159, Article 127281. https://doi.org/10.1016/j.eja.2024.127281
Hou, W., Trankner, M., Lu, J., Yan, J., Huang, S., Ren, T., Cong, R., & Li, X. (2020). Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels. Frontiers in Plant Science, 11, Article 165. https://doi.org/10.3389/fpls.2020.00165
Inzaghi, E., Pampanini, V., Deodati, A., & Cianfarani, S. (2022). The effects of nutrition on linear growth. Nutrients, 14(9), Article 1752. https://doi.org/10.3390/nu14091752
Irianto, H., Mujiyo, Qonita, A., & Riptanti, E. W. (2021). Readiness of farmer groups to adopt the floating rice cultivation in Bojonegoro Regency, East Java Province. E3S Web of Conference, 306, Article 02002. https://doi.org/10.1051/e3sconf/202130602002
Irianto, H., Mujiyo, Riptanti, E. W., & Qonita, A. (2018). The land use potential of flood-prone rice fields using floating rice system in Bojonegoro regency in East Java. IOP Conference Series: Earth and Environmental Science, 142, Article 012072. https://doi.org/10.1088/1755-1315/142/1/012072
Islam, M. D., Price, A. H., & Hallett, P. D. (2023). Effects of root growth of deep and shallow rooting rice cultivars in compacted rice soils on subsequent rice growth. Rice Science, 30(5), 459-472. https://doi.org/10.1016/j.rsci.2023.03.017
Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., & Golden, B. R. (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 112(3), 1475-1501. https://doi.org/10.1002/agj2.20093
Lee, H. S., Hwang, W. H., Jeong, J. H., Yang, S. Y., Jeong, N. J., Lee, C. K., & Choi, M. G. (2021). Physiological causes of transplantation shock on rice growth inhibition and delayed heading. Scientific Reports, 11(1), Article 16818. https://doi.org/10.1038/s41598-021-96009-z
Li, Y. H., Wang, H. Y., Yan, F. J., Li, N., Sun, Y. J., Dai, Z., Xie, H. Y., & Ma, J. (2016). Effect of root-cutting treatment on growth and physiological characteristics of hybrid rice at different seedling-ages. Chinese Journal of Rice Science, 30(6), 626-636. https://doi.org/10.16819/j.1001-7216.2016.6057
Liang, H., Xu, J., Hou, H., Qi, Z., Yang, S., Li, Y., & Hu, K. (2022). Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems. Agricultural Systems, 203(1), Article 103528. https://doi.org/10.1016/j.agsy.2022.103528
Linquist, B. A., Ruark, M. D., Mutters, R., Greer, C., & Hill, J. E. (2014). Nutrients and sediments in surface runoff water from direct-seeded rice fields: implications for nutrient budgets and water quality. Journal of Environmental Quality, 43(5), 1725-1735. https://doi.org/10.2134/jeq2014.03.0135
Liu, K., Zhang, K., Zhang, Y., Cui, J., Li, Z., Huang, J., Li, S., Zhang, J., Deng, S., Zhang, Y., Huang, J., Ren, L., Chu, Y., Zhao, H., & Chen, H. (2024). Optimizing the total spikelets increased grain yield in rice. Agronomy, 14(1), Article 152. https://doi.org/10.3390/agronomy14010152
Liu, Q., Zhou, X., Li, J., & Xin, C. (2017). Effects of seedling age and cultivation density on agronomy characteristics and grain yield of mechanically transplanted rice. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-14672-7
Lv, Z., Zhao, W., Kong, S., Li, L., & Lin, S. (2023). Overview of molecular mechanisms of plant leaf development: a systematic review. Frontiers in Plant Science, 14, Article 1293424. https://doi.org/10.3389/fpls.2023/1293424
Ma, P., Zhang, K., Liao, X., Aer, L., Yang, E., Deng, J., Zhou, L., & Zhang, R. P. (2023). Effects of nitrogen application rate on dry matter weight and yield of direct-seeded rice under straw return. Agronomy, 13(12), Article 3058. https://doi.org/10.3390/agronomy13123058
Magnan, A. K., Oppenheimer, M., Garschagen, M., Buchanan, M. K., Duvat, V. K. E., Forbes, D. L., Ford, J. D., Lambert, E., Petzold, J., Renaud, F. G., Sebesvari, Z., van de Wal, R. S. W., Hinkel, J., & Pörtner, H. O. (2022). Sea level rise risks and societal adaptation benefits in low-lying coastal areas. Scientific Reports, 12(1), Article 10677. https://doi.org/10.1038/s41598-022-14303-w
Ministry of Agriculture-Indonesia. (2015). Deskripsi varietas unggul baru padi. https://repository.pertanian.go.id/server/api/core/bitstreams/781a75a3-6e17-4052-b085-bc42104dace4/content
Mujiyo, M., Irianto, H., Riptanti, E. W., & Qonita, A. (2022). Floating rice cultivation: a solution to reduce crop failure in floor-prone areas. International Journal on Advanced Science, Engineering and Information Technology, 12(3), 953-959. https://doi.org/10.18517/ijaseit.12.3.14665
Nasrudin, N., Kurniasih, B., Putra, E. T. S., Hanudin, E., & Azman, E. A. (2025a). Relationship between soil chemical properties and rice yield under multiple stresses in the coastal agricultural land of Pangandaran, Indonesia. SAINS TANAH – Journal of Soil Science and Agroclimatology, 22(1), 12-22. https://doi.org/10.20961/stjssa.v22i1.98275
Nasrudin, N., Nurhidayah, S., & Dwiyani, M. (2025b). Evaluation of organic matter for enhancing the agro-physiological traits of rice cv. Banyuasin planted under saline conditions. Current Applied Science and Technology, 25(2), Article e0261325. https://doi.org/10.55003/cast.2024.261325
Nguyen, V. K., & Pittock, J. (2016). Floating rice in Vietnam, Cambodia and Myanmar. Australian National University.
Oco, R. G., Devanadera, M. K., & de Grano, R. V. R. (2024). Utilization of Nostoc piscinale as potential biofertilizer to the growth and development of Oryza sativa L. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 22-37. https://doi.org/10.20961/carakatani.v39i1.77067
Oo, M. T., Aung, Z. W., & Puzzo, C. (2022). The floating garden agricultural system of the Inle lake (Myanmar) as an example of equilibrium between food production and biodiversity maintenance. Biodiversity and Conservation, 31(2), 2435-2452. https://doi.org/10.1007/s10531-021-02347-9
Panda, D., & Barik, J. (2021). Flooding tolerance in rice: focus on mechanisms and approaches. Rice Science, 28(1), 43-57. https://doi.org/10.1016/j.rsci.2020.11.006
Paul, M. J. (2021). What are the regulatory targets for intervention in assimilate partitioning to improve crop yield and resilience? Journal of Plant Physiology, 266, Article 153537. https://doi.org/10.1016/j.jplph.2021.153537
Proud, C., Fukai, S., Dunn, B., Dunn, T., & Mitchell, J. (2023). Effect of nitrogen management on grain yield of rice grown in a high yielding environment under flooded and non-flooded conditions. Crop and Environment, 2(1), 37-45. https://doi.org/10.1016/j.crope.2023.02.004
Reddy, K. R., Seghal, A., Jumaa, S., Bheemanahalli, R., Kakar, N., Redona, E. D., Wijewardana, C., Alsajri, F. A., Chastain, D., Gao, W., Taduri, S., & Lone, A. A. (2021). Morpho-physiological characterization of diverse rice genotypes for seedling stage high- and low- temperature tolerance. Agronomy, 11(1), Article 112. https://doi.org/10.3390/agronomy11010112
Rupngam, T., & Messiga, A. J. (2024). Unraveling the interactions between flooding dynamics and agricultural productivity in a changing climate. Sustainability, 16(14), Article 6141. https://doi.org/10.3390/su.16146141
Sarma, B., Kashtoh, H., Tamang, T. L., Bhattacharyya, P. N., Mohanta, Y. K., & Baek, K.-H. (2023). Abiotic stress in rice: visiting the physiological response and its tolerance mechanisms. Plants, 12(23), Article 3948. https://doi.org/10.3390/plants12233948
Sharma, S., Borah, P., Meena, M. K., Bindraban, P., & Pandey, R. (2018). Evaluation of genotypic variation for growth of rice seedlings under optimized hydroponics medium. Indian Journal of Genetics and Plant Breeding, 78(3), 292-301. https://doi.org/10.31742/IJGPB.78.3.3
Tao, Y., Chiu, L., Hoyle, J. W., Dewhirst, R. A., Richey, C., Rasmussen, K., Du, J., Mellor, P., Kuiper, J., Tucker, D., Crites, A., Orr, G. A., Heckert, M. J., Godinez-Vidal, D., Orozco-Cardenas, M. L., & Hall, M. E. (2023). Enhanced photosynthetic efficiency for increased carbon assimilation and woody biomass production in engineered hybrid poplar. Forests, 14(4), Article 827. https://doi.org/10.3390/f14040827
Töpfer, N. (2021). Environment-coupled models of leaf metabolism. Biochemical Society Transactions, 49(2), 119-129. https://doi.org/10.1042/BST20200059
Virk, A. L., Farooq, M. S., Ahmad, A., Khaliq, T., Rehmani, M. I. A., Haider, F. U., & Ejaz, I. (2021). Effect of seedling age on growth and yield of fine rice cultivars under alternate wetting and drying system. Journal of Plant Nutrition, 44(1), 1-15. https://doi.org/10.1080/01904167.2020.1812642
Wang, H., Xiong, R., Zhou, Y., Tan, X., Pan, X., Zeng, Y., Huang, S., Shang, Q., Xie, X., Zhang, J., & Zeng, Y. (2022). Grain yield improvement in high-quality rice varieties released in southern China from 2007 to 2017. Frontiers in Sustainable Food Systems, 6, Article 986655. https://doi.org/10.3389/fsufs.2022.986655
Wang, T., Xiong, W., Kuang, F., Sun, D., Geng, Z., Que, J., Hou, R., & Zhu, D. (2024). Effects of seedling age and root pruning on root characteristics and dry matter accumulation dynamics in machine-transplanted rice. Plant, Soil and Environment, 70(3), 164-175. https://doi.org/10.17221/327/2023-PSE
Wang, Y., Pang, Y., Chen, K., Zhai, L., Shen, C., Wang, S., & Xu, J. (2020). Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice. The Crop Journal, 8(1), 119-131. https://doi.org/10.1016/j.cj.2019.05.001
Wen-jun, H., Bin, H., Bo-yang, W., Yu-hui, W., Fei-yu, Y., Yan-feng, D., & Gang-hua, L. (2023). Growth of tandem long-mat rice seedlings using controlled release fertilizer: mechanical transplantation can be more economical and high yielding. Journal of Integrative Agriculture, 22(12), 3652-3666. https://doi.org/10.1016/j.jia/2023.05.007
Wu, Q., Peng, X., Yang, M., Zhang, W., Dazzo, F. B., Uphoff, N., Jing, Y., & Shen, S. (2018). Rhizobia promote the growth of rice shoots by targeting cell signaling, division and expansion. Plant Molecular Biology, 97(6), 507-523. https://doi.org/10.1007/s11103-018-0756-3
Wu, W., Wang, W., Meadows, M. E., Yao, X., & Peng, W. (2019). Cloud-based typhoon-derived rice rice flooding and lodging detection using multi-temporal Sentinel-1&2. Frontiers in Earth Science, 13, 682-694. https://doi.org/10.1007/s11707-019-0803-7
Yang, S.-Y., Wu, Y.-S., Chen, C.-T., Lai, M.-H., Yen, H.-M., & Yang, C.-Y. (2017). Physiological and molecular responses of seedlings of an upland rice ('Tung Lu 3’) to total submergence compared to those of a submergence-tolerance lowland rice ('FR13A’). Rice, 10(1), Article 42. https://doi.org/10.1186/s12284-017-0180-3
Zhao, J., Liu, X., Wang, M., Xie, L., Wu, Z., Yu, J., Wang, Y., Zhang, Z., Jia, Y., & Liu, Q. (2022). The miR528-D3 module regulates plant height in rice by modulating the gibberellin and abscisic acid metabolisms. Rice, 15, Article 27. https://doi.org/10.1186/s12284-022-00575-3
Zhao, N., Zhang, K., Wang, C., Yan, H., Liu, Y., Xu, W., & Su, Z. (2020). Systematic analysis of differential H3K27me3 and H3K4me3 deposition in callus and seedling reveals the epigenetic regulatory mechanisms involved in callus formation in rice. Frontiers in Genetics, 11, Article 766. https://doi.org/10.3389/fgene.2020.00766
Zhou, Z., Struik, P. C., Gu, J., Putten, P. E. L. van der, Wang, Z., Yang, J., & Yin, X. (2024). Quantifying source-sink relationships in leaf-color modified rice genotypes during grain filling. Journal of Integrative Agriculture, 23(9), 2923-2940. https://doi.org/10.1016/j.jia.2024.03.034
Zohaib, A., Hussain, M., Hassan, I., Latif, M. T., Tabassum, T., & Faisal, N. (2024). Puddled soil settling period and seedling age affect growth, productivity and economic benefits of mechanically transplanted rice. Pakistan Journal of Agricultural Research, 37(1), 29-38. https://doi.org/10.17582/journal.pjar/2024/37.1.29.38
Zou, J., Pang, Z., Li, Z., Guo, C., Lin, H., Li, Z., Chen, H., Huang, J., Chen, T., Xu, H., Qin, B., Letuma, P., Lin, W., & Lin, W. (2024). The underlying mechanism of variety-water-nitrogen-stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting. Journal of Integrative Agriculture, 23(3), 806-823. https://doi.org/10.1016/j.jia.2023.05.038