Yield and Properties of Collagen from Nile Tilapia (Oreochromis niloticus) Scales: Effects of Ultrasonic Pretreatment on Pepsin-Aided Extraction
Main Article Content
Abstract
The yield and characteristics of collagen from Nile tilapia scale pretreated with ultrasound at 40 kHz for 2 h before pepsin-aided extraction for 12-72 h (US collagen) were investigated compared to collagen from the scales without ultrasonic pretreatment (non-US collagen). Both collagens' yields increased with prolonged extraction time (P<0.05). Nevertheless, the yield of ultrasound-pretreated collagen (2.20-4.31%) was approximately 2 times greater than that of collagen without ultrasonic pretreatment (1.06-2.03%) (P<0.05). The amino acid compositions of both collagens were comparable, consisting mainly of glycine, alanine, proline, and hydroxyproline (329-330, 115,119, 114-116, 85 residues per 1000 residues, respectively), and both were classified as type I collagen. Moreover, the thermal transition temperatures (39.38-39.43°C) and enthalpy (0.55 J/g) were comparable between both collagens (P>0.05). Analysis of the FTIR spectra indicated that the ultrasonication pretreatment of the scale before the collagen did not alter the triple-helical structure of the collagen. Therefore, pretreatment of the Nile tilapia scales with ultrasonication before the pepsin-aided process could increase yield without significantly affecting the characteristics and triple-helical structure of the collagen.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Abe, Y., & Krimm, S. (1972). Normal vibrations of crystalline polyglycine I. Biopolymers, 11(9), 1817-1839. https://doi.org/10.1002/bip.1972.360110905
Ali, A. M. M., Benjakul, S., & Kishimura, H. (2017). Molecular characteristics of acid and pepsin soluble collagens from the scales of golden carp (Probarbus jullieni). Emirates Journal of Food and Agriculture, 29(6), 450-457. https://doi.org/10.9755/ejfa.2016-09-1316
Ali, A. M. M., Kishimura, H., & Benjakul, S. (2018). Extraction efficiency and characteristics of acid and pepsin soluble collagens from the skin of golden carp (Probarbus Jullieni) as affected by ultrasonication. Process Biochemistry, 66, 237-244. https://doi.org/10.1016/j.procbio.2018.01.003
AOAC. (2023). Official methods of analysis (22nd ed.). AOAC International.
Baite, T. N., Mandal, B., & Purkait, M. K. (2021). Ultrasound assisted extraction of gallic acid from Ficus auriculata leaves using green solvent. Food and Bioproducts Processing, 128, 1-11. https://doi.org/https://doi.org/10.1016/j.fbp.2021.04.008
Bavisetty, S. C. B., Karnjanapratum, S., Dave, J., Purba, D. T., Kudre, T., Maser, W. H., Maiyah, N., Kingwascharapong, P., & Ali, A. M. M. (2024). Ultrasonication on collagen yield, physiochemical and structural properties from seabass (Lates Calcarifer) scales as affected by pretreatment and extraction conditions. Natural and Life Sciences Communications, 23(1), Article e2024003. https://doi.org/10.12982/NLSC.2024.003
Bergman, I., & Loxley, R. (1963). Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Analytical Chemistry, 35(12), 1961-1965. https://doi.org/10.1021/ac60205a053
Boon-Ek, P. (2025, February 5). Monitoring Report: Nile tilapia and products (Febuary, 2024). Fisheries Economics Division, Department of Fisheries, Thailand. https://www.fisheries.go.th/strategy/fisheconomic/Monthly%20report/tilapia/2%20Tilapia%20กพ%202567.pdf
Chen, L., Cheng, G., Meng, S., & Ding, Y. (2022). Collagen membrane derived from fish scales for application in bone tissue engineering. Polymers, 14(13), Article 2532. https://doi.org/10.3390/polym14132532
Chen, S., Chen, H., Xie, Q., Hong, B., Chen, J., Hua, F., Bai, K., He, J., Yi, R., & Wu, H. (2016). Rapid isolation of high purity pepsin-soluble type I collagen from scales of red drum fish (Sciaenops ocellatus). Food Hydrocolloids, 52, 468-477. https://doi.org/10.1016/j.foodhyd.2015.07.027
Chinh, N. T., Manh, V. Q., Trung, V. Q., Lam, T. D., Huynh, M. D., Tung, N. Q., Trinh, N. D., & Hoang, T. (2019). Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence. Natural Product Communications, 14(7), Article 1934578X19866288. https://doi.org/10.1177/1934578X19866288
Chuaychan, S., Benjakul, S., & Kishimura, H. (2015). Characteristics of acid- and pepsin-soluble collagens from scale of seabass (Lates calcarifer). LWT - Food Science and Technology, 63(1), 71-76. https://doi.org/10.1016/j.lwt.2015.03.002
Doyle, B. B., Bendit, E. G., & Blout, E. R. (1975). Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers, 14(5), 937-957. https://doi.org/10.1002/bip.1975.360140505
Duan, R., Zhang, J., Du, X., Yao, X., & Konno, K. (2009). Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chemistry, 112(3), 702-706. https://doi.org/10.1016/j.foodchem.2008.06.020
Feng, H., Li, X., Deng, X., Li, X., Guo, J., Ma, K., & Jiang, B. (2020). The lamellar structure and biomimetic properties of a fish scale matrix. RSC Advances, 10(2), 875-885. https://doi.org/10.1039/c9ra08189e
Fujii, K. K., Taga, Y., Takagi, Y. K., Masuda, R., Hattori, S., & Koide, T. (2022). The thermal stability of the collagen triple helix Is tuned according to the environmental temperature. International Journal of Molecular Sciences, 23(4), Article 2040. https://doi.org/10.3390/ijms23042040
Huang, C.-Y., Kuo, J.-M., Wu, S.-J., & Tsai, H.-T. (2016). Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food Chemistry, 190, 997-1006. https://doi.org/10.1016/j.foodchem.2015.06.066
Kim, H. K., Kim, Y. H., Kim, Y. J., Park, H. J., & Lee, N. H. (2012). Effects of ultrasonic treatment on collagen extraction from skins of the sea bass Lateolabrax japonicus. Fisheries Science, 78(2), 485-490. https://doi.org/10.1007/s12562-012-0472-x
Kittiphattanabawon, P., Sriket, C., Kishimura, H., & Benjakul, S. (2019). Characteristics of acid and pepsin solubilized collagens from Nile tilapia (Oreochromis nioticus) scale. Emirates Journal of Food and Agriculture, 31(2), 95-101. https://doi.org/10.9755/ejfa.2019.v31.i2.1911
Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 38, 181-364. https://doi.org/10.1016/S0065-3233(08)60528-8
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. https://doi.org/10.1038/227680a0
Li, L.-Y., Zhao, Y.-Q., He, Y., Chi, C.-F., & Wang, B. (2018). Physicochemical and antioxidant properties of acid-and pepsin-soluble collagens from the scales of Miiuy croaker (Miichthys miiuy). Marine Drugs, 16(10), Article 394. https://doi.org/10.3390/md16100394
Li, Z.-R., Wang, B., Chi, C.-F., Zhang, Q.-H., Gong, Y.-D., Tang, J.-J., Luo, H.-Y., & Ding, G.-F. (2013). Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocolloids, 31(1), 103-113. https://doi.org/10.1016/j.foodhyd.2012.10.001
Liu, D., Liang, L., Regenstein, J. M., & Zhou, P. (2012). Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chemistry, 133(4), 1441-1448. https://doi.org/10.1016/j.foodchem.2012.02.032
Liu, D., Zhang, X., Li, T., Yang, H., Zhang, H., Regenstein, J. M., & Zhou, P. (2015). Extraction and characterization of acid- and pepsin-soluble collagens from the scales, skins and swim-bladders of grass carp (Ctenopharyngodon idella). Food Bioscience, 9, 68-74. https://doi.org/https://doi.org/10.1016/j.fbio.2014.12.004
Mondal, J., Lakkaraju, R., Ghosh, P., & Ashokkumar, M. (2021). Acoustic cavitation-induced shear: a mini-review. Biophysical Reviews, 13(6), 1229-1243. https://doi.org/10.1007/s12551-021-00896-5
Moniruzzaman, S. M., Takahashi, K., Nesa, N. U., Keratimanoch, S., Okazaki, E., & Osako, K. (2019). Characterization of acid- and pepsin-soluble collagens extracted from scales of carp and lizardfish caught in japan, bangladesh and vietnam with a focus on thermostability. Food Science and Technology Research, 25(2), 331-340. https://doi.org/10.3136/fstr.25.331
Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, 86(3), 325-332. https://doi.org/10.1016/j.foodchem.2003.09.038
Nalinanon, S., Benjakul, S., Visessanguan, W., & Kishimura, H. (2008). Tuna pepsin: characteristics and its use for collagen extraction from the skin of threadfin bream (Nemipterus spp.). Journal of Food Science, 73(5), C413-C419. https://doi.org/10.1111/j.1750-3841.2008.00777.x
Payne, K. J., & Veis, A. (1988). Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers, 27(11), 1749-1760. https://doi.org/10.1002/bip.360271105
Plepis, A. M. D. G., Goissis, G., & Das-Gupta, D. K. (1996). Dielectric and pyroelectric characterization of anionic and native collagen. Polymer Engineering and Science, 36(24), 2932-2938. https://doi.org/10.1002/pen.10694
Shaik, M. I., Chong, J. Y., & Sarbon, N. M. (2021). Effect of ultrasound-assisted extraction on the extractability and physicochemical properties of acid and pepsin soluble collagen derived from Sharpnose stingray (Dasyatis zugei) skin. Biocatalysis and Agricultural Biotechnology, 38, Article 102218. https://doi.org/10.1016/j.bcab.2021.102218
Shalaby, M., Agwa, M., Saeed, H., Khedr, S. M., Morsy, O., & El-Demellawy, M. A. (2020). Fish scale collagen preparation, characterization and its application in wound healing. Journal of Polymers and the Environment, 28(1), 166-178. https://doi.org/10.1007/s10924-019-01594-w
Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics: A biometrical approach (2nd ed.). McGraw-Hill.
Tu, Z. C., Huang, T., Wang, H., Sha, X. M., Shi, Y., Huang, X. Q., Man, Z. Z., & Li, D. J. (2015). Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. Journal of Food Science and Technology, 52(4), 2166-2174. https://doi.org/10.1007/s13197-013-1239-9