Preparation of Composite Films of Rod-like Structure of ZnO and Corn Starch for Bending Sensor

Main Article Content

Kitikamol Feemuchang
Korakot Onlaor
Benchapol Tunhoo
Thutiyaporn Thiwawong

Abstract

In this work, rod-like structure zinc oxide (R-ZnO) was synthesized by a hydrothermal process with the hydrothermal times of 3, 5, and 10 h. The effect of reaction time was reflected in the physical properties of the prepared R-ZnO, such as crystalline structure, shape geometries, and optical properties. Then, a bending device was fabricated with starch composite films and the rod-like structure of zinc oxide with different R-ZnO concentrations. The fabricated device exhibited flexibility characteristics at various bending angles. The composite film of corn starch and 1%wt. R-ZnO at a hydrothermal reaction time of 10 h demonstrated a high sensitivity at 89.5% with a gauge factor of 1.58. Moreover, the device of corn starch composited with R-ZnO exhibited fast response/recovery time of 0.23/0.15 s with high stability of bending cycle of more than 1,600 cycles. Therefore, the composite films of R-ZnO and natural starch are strong potential candidates for bending devices.

Article Details

How to Cite
Feemuchang, K. ., Onlaor, K. ., Tunhoo, B., & Thiwawong, T. (2025). Preparation of Composite Films of Rod-like Structure of ZnO and Corn Starch for Bending Sensor. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0266426. https://doi.org/10.55003/cast.2025.266426
Section
Original Research Articles

References

Apandi, N. A. A., Razak, N. A. S. A., Masri, M., Yusoff, S. F., & Lazim, A. M. (2013). A preliminary study on gum arabic as a binder in preparation of starch based edible plastic. International Journal on Advanced Science, Engineering and Information Technology, 3(2), 148-150. https://doi.org/10.18517/ijaseit.3.2.301

Amjadi, M., Kyung, K.-U., Park, I., & Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 26(11), 1678-1698. https://doi.org/10.1002/adfm.201504755

Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., & Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano, 8(5), 5154-5163.

Arifin, H., Nurhadi, B., Azlin-Hasim, S., Masruchin, N., Vania, P., & Hilmi, A. (2022). Corn starch-based bionanocomposite film reinforced with ZnO nanoparticles and different types of plasticizers. Frontiers in Sustainable Food Systems, 6, Article 886219. https://doi.org/10.3389/fsufs.2022.886219

Azmi, Z. H., Mohd Aris, S. N., Abubakar, S., Sagadevan, S., Siburian, R., & Paiman, S. (2022). Effect of seed layer on the growth of zinc oxide nanowires by chemical bath deposition method. Coatings, 12(4), Article 474. https://doi.org/10.3390/coatings12040474

Barja, A. M., Ryu, Y. K., Tarancon, S., Tejado, E., Hamada, A., Velasco, A., & Martinez, J. (2024). Laser-Induced graphene strain sensors for body movement monitoring. ACS Omega, 9(37), 38359-38370. https://doi.org/10.1021/acsomega.3c09067

Bu, Y., Shen, T., Yang, W., Yang, S., Zhao, Y., Liu, H., Zheng, Y., Liu, C., & Shen, C. (2021). Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Science Bulletin, 66(18), 1849-1857. https://doi.org/https://doi.org/10.1016/j.scib.2021.04.041

Costa, J. C., Spina, F., Lugoda, P., Garcia-Garcia, L., Roggen, D., & Münzenrieder, N. (2019). Flexible sensors—from materials to applications. Technologies, 7(2), Article 35. https://doi.org/10.3390/technologies7020035

Deka, N., Bera, A., Roy, D., & De, P. (2022). Methyl methacrylate-based copolymers: Recent developments in the areas of transparent and stretchable active matrices. ACS Omega, 7(42), 36929-36944. https://doi.org/10.1021/acsomega.2c04564

Di, X., Ma, Q., Xu, Y., Yang, M., Wu, G., & Sun, P. (2021). High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers, 5, 315-323. https://doi.org/10.1039/D0QM00625D

Ejsmont, A., & Goscianska, J. (2023). Hydrothermal synthesis of ZnO superstructures with controlled morphology via temperature and pH optimization. Materials, 16(4), Article 1641. https://doi.org/10.3390/ma16041641

Ferreira, A., Silva, J. P., Rodrigues, R., Martin, N., Lanceros-Méndez, S., & Vaz, F. (2019). High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications. Thin Solid Films, 691, Article 137587. https://doi.org/https://doi.org/10.1016/j.tsf.2019.137587

Gautam, N., Garg, S., & Yadav, S. (2021). Underutilized finger millet crop for starch extraction, characterization, and utilization in the development of flexible thin film. Journal of Food Science and Technology, 58(11), 4411-4419. https://doi.org/10.1007/s13197-020-04926-0

Guzenko, N., Godzierz, M., Kurtyka, K., Hercog, A., Nocoń-Szmajda, K., Gawron, A., Szeluga, U., Trzebicka, B., Yang, R., & Rümmeli, M. H. (2023). Flexible piezoresistive polystyrene composite sensors filled with hollow 3D graphitic shells. Polymers, 15(24), Article 4674. https://doi.org/10.3390/polym15244674

Holi, A. M., Zainal, Z., Talib, Z. A., Lim, H.-N., Yap, C.-C., Chang, S.-K., & Ayal, A. K. (2016). Effect of hydrothermal growth time on ZnO nanorod arrays photoelectrode performance. Optik, 127(23), 11111-11118. https://doi.org/10.1016/j.ijleo.2016.09.015

Joongpun, P., Feemuchang, K., Onlaor, K., Thiwawong, T., & Tunhoo, B. (2024). Facile synthesis of zinc oxide nanorods using a single-phase flow with 3D printed device. Thai Journal of Nanoscience and Nanotechnology, 9(1), 9-18.

Kale, R. B., Hsu, Y.-J., Lin, Y.-F., & Lu, S.-Y. (2014). Hydrothermal synthesis, characterizations and photoluminescence study of single crystalline hexagonal ZnO nanorods with three dimensional flowerlike microstructures. Superlattices and Microstructures, 69, 239-252. https://doi.org/10.1016/j.spmi.2014.03.003

Katiyar, A., Kumar, N., Shukla, R. K., & Srivastava, A. (2020). Substrate free ultrasonic-assisted hydrothermal growth of ZnO nanoflowers at low temperature. SN Applied Sciences, 2(8), Article 1386. https://doi.org/10.1007/s42452-020-3186-1

Keawkusonwiwat, S., Tunhoo, B., Onlaor, K., & Thiwawong, T. (2023). Preparation of pH sensor based on extended-gate field-effect transistor with spinel ZnCo2O4 thin films by electrostatic spray deposition. Journal of Electronic Materials, 52(12), 8095-8107. https://doi.org/10.1007/s11664-023-10736-9

Kesler, D., Ariyawansa, B. P., & Rathnayake, H. (2023). Mechanical properties and synergistic interfacial interactions of ZnO nanorod-reinforced polyamide–imide composites. Polymers, 15(6), Article 1522. https://doi.org/10.3390/polym15061522

Khai, T. V., Long, L. N., Khoi, N. H. T., & Thang, N. H. (2022). Effects of hydrothermal reaction time on the structure and optical properties of ZnO/graphene oxide nanocomposites. Crystals, 12(12), Article 1825. https://doi.org/10.3390/cryst12121825

Kumar, S., Mudai, A., Roy, B., Basumatary, I. B., Mukherjee, A., & Dutta, J. (2020). Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods, 9(9), Article 1143. https://doi.org/10.3390/foods9091143

Li, K., Wei, Z., Zhu, X., Zhao, W., Zhang, X., & Jiang, J. (2018). Microstructure and optical properties of ZnO nanorods prepared by anodic arc plasma method. Journal of Applied Biomaterials and Functional Materials, 16(1S), 105-111. https://doi.org/10.1177/2280800017751492

Li, Q., Wang, Y., Jiang, S., Li, T., Ding, X., Tao, X., & Wang, X. (2020). Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors. Materials and Design, 188, Article 108451. https://doi.org/10.1016/j.matdes.2019.108451

Limthin, D., Leepheng, P., Tunhoo, B., Onlaor, K., Klamchuen, A., Phromyothin, D., & Thiwawong, T. (2023). Preparation of surface-modified electrode of copper( ii ) oxide mixed with the molecularly imprinted polymer for enhancement of melamine detection with photoelectrochemical technique. RSC Advances, 13, 14729-14736. https://doi.org/10.1039/D3RA01854G

Ma, J., Zhu, W., Tian, Y., & Wang, Z. (2016). Preparation of zinc oxide-starch nanocomposite and its application on coating. Nanoscale Research Letters, 11(1), Article 200. https://doi.org/10.1186/s11671-016-1404-y

Muhammad, W., & Kim, S.-D. (2023). Flexible bending sensors fabricated with interdigitated electrode structures cross-linked by transition metal doped ZnO nanorods. Chemosensors, 11(10), Article 529. https://doi.org/10.3390/chemosensors11100529

Park, J., & Lee, J.-H. (2021). Outward- and inward-distinguishable bending sensor with silver nanowires sandwiched between polydimethylsiloxane layers. AIP Advances, 11(12), Article 125309. https://doi.org/10.1063/5.0072506

Ponnamma, D., Cabibihan, J.-J., Rajan, M., Pethaiah, S. S., Deshmukh, K., Gogoi, J. P., Pasha, S. K. K., Ahamed, M. B., Krishnegowda, J., Chandrashekar, B. N., Polu, A. R., & Cheng, C. (2019). Synthesis, optimization and applications of ZnO/polymer nanocomposites. Materials Science and Engineering: C, 98, 1210-1240. https://doi.org/10.1016/j.msec.2019.01.081

Poornaprakash, B., Subramanyam, K., Vattikuti, S. V. P., Kumar, M., Kim, Y. L., & Mallem, S. P. R. (2021). Room temperature ferromagnetism and enhanced photocatalytic activity of ZnO:Ga nanorods. Applied Physics A, 127(1), Article 64. https://doi.org/10.1007/s00339-020-04201-1

Rathod, K. N., Joshi, Z., Dhruv, D., Gadani, K., Boricha, H., Joshi, A. D., Solanki, P. S., & Shah, N. A. (2018). Size effects on electrical properties of chemically grown zinc oxide nanoparticles. Materials Research Express, 5(3), Article 035040. https://doi.org/10.1088/2053-1591/aab5ec

Rittenauer, M., Gladis, S., Gastl, M., & Becker, T. (2021). Gelatinization or pasting? The impact of different temperature levels on the saccharification efficiency of barley malt starch. Foods, 10(8), Article 1733. https://doi.org/10.3390/foods10081733

Shapi’i, R. A., Othman, S. H., Basha, R. K., & Naim, M. N. (2022). Mechanical, thermal, and barrier properties of starch films incorporated with chitosan nanoparticles. Nanotechnology Reviews,11(1), 1464-1477. https://doi.org/10.1515/ntrev-2022-0094

Shitu, I. G., Katibi, K. K., Muhammad, A., Chiromawa, I. M., Tafida, R. A., Amusa, A. A., & Babani, S. (2024). Effects of irradiation time on the structural, elastic, and optical properties of hexagonal (wurtzite) zinc oxide nanoparticle synthesised via microwave-assisted hydrothermal route. Optical and Quantum Electronics, 56(2), Article 266. https://doi.org/10.1007/s11082-023-05867-6

Soleimani-gorgani, A. (2015). Inkjet printing. In J. Izdebska & S. Thomas (Eds.). Printing on polymers: fundamentals and applications (pp. 231-246). William Andrew.

Song, J., & Lim, S. (2007). Effect of Seed Layer on the Growth of ZnO Nanorods. The Journal of Physical Chemistry C, 111(2), 596-600. https://doi.org/10.1021/jp0655017

Spinelli, G., Lamberti, P., Tucci, V., Vertuccio, L., & Guadagno, L. (2018). Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Composites Part B: Engineering, 145, 90-99. https://doi.org/10.1016/j.compositesb.2018.03.025

Sun, S., Guo, L., Chang, X., Liu, Y., Niu, S., Lei, Y., Liu, T., & Hu, X. (2019). A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. Journal of Materials Science, 54(9), 7048-7061. https://doi.org/10.1007/s10853-019-03354-6

Tan, S. X., Andriyana, A., Ong, H. C., Lim, S., Pang, Y. L., & Ngoh, G. C. (2022). A comprehensive review on the emerging roles of nanofillers and plasticizers towards sustainable starch-based bioplastic fabrication. Polymers, 14(4), Article 664. https://doi.org/10.3390/polym14040664

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

Vinod, R., Sajan, P., Achary, S. R., Tomas, C. M., Muñoz-Sanjosé, V., & Bushiri, M. J. (2012). Enhanced UV emission from ZnO nanoflowers synthesized by the hydrothermal process. Journal of Physics D: Applied Physics, 45(42), Article 425103. https://doi.org/10.1088/0022-3727/45/42/425103

Wang, Y.-F., Yoshida, A., Takeda, Y., Sekine, T., Kumaki, D., & Tokito, S. (2023). Printed directional bending sensor with high sensitivity and low hysteresis for human motion detection and soft robotic perception. Sensors, 23(11), Article 5041. https://doi.org/10.3390/s23115041

Wasly, H. S., El-sadek, M. S. A., & Henini, M. (2018). Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Applied Physics A, 124, Article 76. https://doi.org/10.1007/s00339-017-1482-4

Yahiya, L. Z., Dhahir, M. K., & Mahdi, Z. F. (2020). Synthesized ZnO nanorod with different range of morphologies using a simple hydrothermal method. AIP conference proceedings, 2290, Article 030022. https://doi.org10.1063/5.0031634

Yang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 115, 1-37. https://doi.org/10.1016/j.mser.2017.02.001

Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, Article 624520. https://doi.org/10.1155/2012/624520

Zhu, L., Xiang, Y., Liu, Y., Geng, K., Yao, R., & Li, B. (2022). Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally-grown ZnO nanorods on ZnO seed layers with different thicknesses. Sensors and Actuators A: Physical, 341, Article 113552. https://doi.org/10.1016/j.sna.2022.113552

Żołek-Tryznowska, Z., & Cichy, Ł. (2018). Glycerol derivatives as a modern plasticizers for starch films. In 9th International symposium on graphic engineering and design (pp. 217-221). The University of Novi Sad. https://doi.org/10.24867/GRID-2018-p27