Preparation of Composite Films of Rod-like Structure of ZnO and Corn Starch for Bending Sensor
Main Article Content
Abstract
In this work, rod-like structure zinc oxide (R-ZnO) was synthesized by a hydrothermal process with the hydrothermal times of 3, 5, and 10 h. The effect of reaction time was reflected in the physical properties of the prepared R-ZnO, such as crystalline structure, shape geometries, and optical properties. Then, a bending device was fabricated with starch composite films and the rod-like structure of zinc oxide with different R-ZnO concentrations. The fabricated device exhibited flexibility characteristics at various bending angles. The composite film of corn starch and 1%wt. R-ZnO at a hydrothermal reaction time of 10 h demonstrated a high sensitivity at 89.5% with a gauge factor of 1.58. Moreover, the device of corn starch composited with R-ZnO exhibited fast response/recovery time of 0.23/0.15 s with high stability of bending cycle of more than 1,600 cycles. Therefore, the composite films of R-ZnO and natural starch are strong potential candidates for bending devices.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Apandi, N. A. A., Razak, N. A. S. A., Masri, M., Yusoff, S. F., & Lazim, A. M. (2013). A preliminary study on gum arabic as a binder in preparation of starch based edible plastic. International Journal on Advanced Science, Engineering and Information Technology, 3(2), 148-150. https://doi.org/10.18517/ijaseit.3.2.301
Amjadi, M., Kyung, K.-U., Park, I., & Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 26(11), 1678-1698. https://doi.org/10.1002/adfm.201504755
Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., & Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano, 8(5), 5154-5163.
Arifin, H., Nurhadi, B., Azlin-Hasim, S., Masruchin, N., Vania, P., & Hilmi, A. (2022). Corn starch-based bionanocomposite film reinforced with ZnO nanoparticles and different types of plasticizers. Frontiers in Sustainable Food Systems, 6, Article 886219. https://doi.org/10.3389/fsufs.2022.886219
Azmi, Z. H., Mohd Aris, S. N., Abubakar, S., Sagadevan, S., Siburian, R., & Paiman, S. (2022). Effect of seed layer on the growth of zinc oxide nanowires by chemical bath deposition method. Coatings, 12(4), Article 474. https://doi.org/10.3390/coatings12040474
Barja, A. M., Ryu, Y. K., Tarancon, S., Tejado, E., Hamada, A., Velasco, A., & Martinez, J. (2024). Laser-Induced graphene strain sensors for body movement monitoring. ACS Omega, 9(37), 38359-38370. https://doi.org/10.1021/acsomega.3c09067
Bu, Y., Shen, T., Yang, W., Yang, S., Zhao, Y., Liu, H., Zheng, Y., Liu, C., & Shen, C. (2021). Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Science Bulletin, 66(18), 1849-1857. https://doi.org/https://doi.org/10.1016/j.scib.2021.04.041
Costa, J. C., Spina, F., Lugoda, P., Garcia-Garcia, L., Roggen, D., & Münzenrieder, N. (2019). Flexible sensors—from materials to applications. Technologies, 7(2), Article 35. https://doi.org/10.3390/technologies7020035
Deka, N., Bera, A., Roy, D., & De, P. (2022). Methyl methacrylate-based copolymers: Recent developments in the areas of transparent and stretchable active matrices. ACS Omega, 7(42), 36929-36944. https://doi.org/10.1021/acsomega.2c04564
Di, X., Ma, Q., Xu, Y., Yang, M., Wu, G., & Sun, P. (2021). High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers, 5, 315-323. https://doi.org/10.1039/D0QM00625D
Ejsmont, A., & Goscianska, J. (2023). Hydrothermal synthesis of ZnO superstructures with controlled morphology via temperature and pH optimization. Materials, 16(4), Article 1641. https://doi.org/10.3390/ma16041641
Ferreira, A., Silva, J. P., Rodrigues, R., Martin, N., Lanceros-Méndez, S., & Vaz, F. (2019). High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications. Thin Solid Films, 691, Article 137587. https://doi.org/https://doi.org/10.1016/j.tsf.2019.137587
Gautam, N., Garg, S., & Yadav, S. (2021). Underutilized finger millet crop for starch extraction, characterization, and utilization in the development of flexible thin film. Journal of Food Science and Technology, 58(11), 4411-4419. https://doi.org/10.1007/s13197-020-04926-0
Guzenko, N., Godzierz, M., Kurtyka, K., Hercog, A., Nocoń-Szmajda, K., Gawron, A., Szeluga, U., Trzebicka, B., Yang, R., & Rümmeli, M. H. (2023). Flexible piezoresistive polystyrene composite sensors filled with hollow 3D graphitic shells. Polymers, 15(24), Article 4674. https://doi.org/10.3390/polym15244674
Holi, A. M., Zainal, Z., Talib, Z. A., Lim, H.-N., Yap, C.-C., Chang, S.-K., & Ayal, A. K. (2016). Effect of hydrothermal growth time on ZnO nanorod arrays photoelectrode performance. Optik, 127(23), 11111-11118. https://doi.org/10.1016/j.ijleo.2016.09.015
Joongpun, P., Feemuchang, K., Onlaor, K., Thiwawong, T., & Tunhoo, B. (2024). Facile synthesis of zinc oxide nanorods using a single-phase flow with 3D printed device. Thai Journal of Nanoscience and Nanotechnology, 9(1), 9-18.
Kale, R. B., Hsu, Y.-J., Lin, Y.-F., & Lu, S.-Y. (2014). Hydrothermal synthesis, characterizations and photoluminescence study of single crystalline hexagonal ZnO nanorods with three dimensional flowerlike microstructures. Superlattices and Microstructures, 69, 239-252. https://doi.org/10.1016/j.spmi.2014.03.003
Katiyar, A., Kumar, N., Shukla, R. K., & Srivastava, A. (2020). Substrate free ultrasonic-assisted hydrothermal growth of ZnO nanoflowers at low temperature. SN Applied Sciences, 2(8), Article 1386. https://doi.org/10.1007/s42452-020-3186-1
Keawkusonwiwat, S., Tunhoo, B., Onlaor, K., & Thiwawong, T. (2023). Preparation of pH sensor based on extended-gate field-effect transistor with spinel ZnCo2O4 thin films by electrostatic spray deposition. Journal of Electronic Materials, 52(12), 8095-8107. https://doi.org/10.1007/s11664-023-10736-9
Kesler, D., Ariyawansa, B. P., & Rathnayake, H. (2023). Mechanical properties and synergistic interfacial interactions of ZnO nanorod-reinforced polyamide–imide composites. Polymers, 15(6), Article 1522. https://doi.org/10.3390/polym15061522
Khai, T. V., Long, L. N., Khoi, N. H. T., & Thang, N. H. (2022). Effects of hydrothermal reaction time on the structure and optical properties of ZnO/graphene oxide nanocomposites. Crystals, 12(12), Article 1825. https://doi.org/10.3390/cryst12121825
Kumar, S., Mudai, A., Roy, B., Basumatary, I. B., Mukherjee, A., & Dutta, J. (2020). Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods, 9(9), Article 1143. https://doi.org/10.3390/foods9091143
Li, K., Wei, Z., Zhu, X., Zhao, W., Zhang, X., & Jiang, J. (2018). Microstructure and optical properties of ZnO nanorods prepared by anodic arc plasma method. Journal of Applied Biomaterials and Functional Materials, 16(1S), 105-111. https://doi.org/10.1177/2280800017751492
Li, Q., Wang, Y., Jiang, S., Li, T., Ding, X., Tao, X., & Wang, X. (2020). Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors. Materials and Design, 188, Article 108451. https://doi.org/10.1016/j.matdes.2019.108451
Limthin, D., Leepheng, P., Tunhoo, B., Onlaor, K., Klamchuen, A., Phromyothin, D., & Thiwawong, T. (2023). Preparation of surface-modified electrode of copper( ii ) oxide mixed with the molecularly imprinted polymer for enhancement of melamine detection with photoelectrochemical technique. RSC Advances, 13, 14729-14736. https://doi.org/10.1039/D3RA01854G
Ma, J., Zhu, W., Tian, Y., & Wang, Z. (2016). Preparation of zinc oxide-starch nanocomposite and its application on coating. Nanoscale Research Letters, 11(1), Article 200. https://doi.org/10.1186/s11671-016-1404-y
Muhammad, W., & Kim, S.-D. (2023). Flexible bending sensors fabricated with interdigitated electrode structures cross-linked by transition metal doped ZnO nanorods. Chemosensors, 11(10), Article 529. https://doi.org/10.3390/chemosensors11100529
Park, J., & Lee, J.-H. (2021). Outward- and inward-distinguishable bending sensor with silver nanowires sandwiched between polydimethylsiloxane layers. AIP Advances, 11(12), Article 125309. https://doi.org/10.1063/5.0072506
Ponnamma, D., Cabibihan, J.-J., Rajan, M., Pethaiah, S. S., Deshmukh, K., Gogoi, J. P., Pasha, S. K. K., Ahamed, M. B., Krishnegowda, J., Chandrashekar, B. N., Polu, A. R., & Cheng, C. (2019). Synthesis, optimization and applications of ZnO/polymer nanocomposites. Materials Science and Engineering: C, 98, 1210-1240. https://doi.org/10.1016/j.msec.2019.01.081
Poornaprakash, B., Subramanyam, K., Vattikuti, S. V. P., Kumar, M., Kim, Y. L., & Mallem, S. P. R. (2021). Room temperature ferromagnetism and enhanced photocatalytic activity of ZnO:Ga nanorods. Applied Physics A, 127(1), Article 64. https://doi.org/10.1007/s00339-020-04201-1
Rathod, K. N., Joshi, Z., Dhruv, D., Gadani, K., Boricha, H., Joshi, A. D., Solanki, P. S., & Shah, N. A. (2018). Size effects on electrical properties of chemically grown zinc oxide nanoparticles. Materials Research Express, 5(3), Article 035040. https://doi.org/10.1088/2053-1591/aab5ec
Rittenauer, M., Gladis, S., Gastl, M., & Becker, T. (2021). Gelatinization or pasting? The impact of different temperature levels on the saccharification efficiency of barley malt starch. Foods, 10(8), Article 1733. https://doi.org/10.3390/foods10081733
Shapi’i, R. A., Othman, S. H., Basha, R. K., & Naim, M. N. (2022). Mechanical, thermal, and barrier properties of starch films incorporated with chitosan nanoparticles. Nanotechnology Reviews,11(1), 1464-1477. https://doi.org/10.1515/ntrev-2022-0094
Shitu, I. G., Katibi, K. K., Muhammad, A., Chiromawa, I. M., Tafida, R. A., Amusa, A. A., & Babani, S. (2024). Effects of irradiation time on the structural, elastic, and optical properties of hexagonal (wurtzite) zinc oxide nanoparticle synthesised via microwave-assisted hydrothermal route. Optical and Quantum Electronics, 56(2), Article 266. https://doi.org/10.1007/s11082-023-05867-6
Soleimani-gorgani, A. (2015). Inkjet printing. In J. Izdebska & S. Thomas (Eds.). Printing on polymers: fundamentals and applications (pp. 231-246). William Andrew.
Song, J., & Lim, S. (2007). Effect of Seed Layer on the Growth of ZnO Nanorods. The Journal of Physical Chemistry C, 111(2), 596-600. https://doi.org/10.1021/jp0655017
Spinelli, G., Lamberti, P., Tucci, V., Vertuccio, L., & Guadagno, L. (2018). Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Composites Part B: Engineering, 145, 90-99. https://doi.org/10.1016/j.compositesb.2018.03.025
Sun, S., Guo, L., Chang, X., Liu, Y., Niu, S., Lei, Y., Liu, T., & Hu, X. (2019). A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. Journal of Materials Science, 54(9), 7048-7061. https://doi.org/10.1007/s10853-019-03354-6
Tan, S. X., Andriyana, A., Ong, H. C., Lim, S., Pang, Y. L., & Ngoh, G. C. (2022). A comprehensive review on the emerging roles of nanofillers and plasticizers towards sustainable starch-based bioplastic fabrication. Polymers, 14(4), Article 664. https://doi.org/10.3390/polym14040664
Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. https://doi.org/10.1016/j.eurpolymj.2010.12.011
Vinod, R., Sajan, P., Achary, S. R., Tomas, C. M., Muñoz-Sanjosé, V., & Bushiri, M. J. (2012). Enhanced UV emission from ZnO nanoflowers synthesized by the hydrothermal process. Journal of Physics D: Applied Physics, 45(42), Article 425103. https://doi.org/10.1088/0022-3727/45/42/425103
Wang, Y.-F., Yoshida, A., Takeda, Y., Sekine, T., Kumaki, D., & Tokito, S. (2023). Printed directional bending sensor with high sensitivity and low hysteresis for human motion detection and soft robotic perception. Sensors, 23(11), Article 5041. https://doi.org/10.3390/s23115041
Wasly, H. S., El-sadek, M. S. A., & Henini, M. (2018). Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Applied Physics A, 124, Article 76. https://doi.org/10.1007/s00339-017-1482-4
Yahiya, L. Z., Dhahir, M. K., & Mahdi, Z. F. (2020). Synthesized ZnO nanorod with different range of morphologies using a simple hydrothermal method. AIP conference proceedings, 2290, Article 030022. https://doi.org10.1063/5.0031634
Yang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 115, 1-37. https://doi.org/10.1016/j.mser.2017.02.001
Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, Article 624520. https://doi.org/10.1155/2012/624520
Zhu, L., Xiang, Y., Liu, Y., Geng, K., Yao, R., & Li, B. (2022). Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally-grown ZnO nanorods on ZnO seed layers with different thicknesses. Sensors and Actuators A: Physical, 341, Article 113552. https://doi.org/10.1016/j.sna.2022.113552
Żołek-Tryznowska, Z., & Cichy, Ł. (2018). Glycerol derivatives as a modern plasticizers for starch films. In 9th International symposium on graphic engineering and design (pp. 217-221). The University of Novi Sad. https://doi.org/10.24867/GRID-2018-p27