Enhanced Enzyme-assisted Aqueous Extraction of Polyphenols from Ficus auriculata Fruits: Optimization and Assessment of Bioactive Properties
Main Article Content
Abstract
The Ficus auriculata fruit is not only a nutritionally valuable food but also a rich source of polyphenols, which contribute to cardiovascular health, cancer prevention, blood sugar regulation, and cholesterol reduction. This study aimed to optimize the extraction conditions for polyphenol-rich extracts from fig fruit using response surface methodology (RSM). The effects of enzyme concentration, solvent-to-solid ratio, and extraction time on total polyphenol content (TPC) were evaluated. The optimized conditions were determined to be an enzyme concentration of 0.74%, a solvent-to-solid ratio of 23:1 (mL/g), and an extraction time of 65 min. Under these conditions, the TPC in the extract reached 2.65 g GAE/100 g dry matter, closely aligning with the predicted value of 2.70 g GAE/100 g dry matter. Scanning electron microscopy (SEM) analysis confirmed significant structural modifications in enzyme-treated samples, indicating enhanced extraction efficiency. Furthermore, GC-MS profiling identified 13 bioactive compounds in the optimized extract, suggesting their potential role in antioxidant activity. These findings highlight the potential of F. auriculata fruit as a valuable source of natural polyphenols, supporting its application in functional foods and pharmaceutical formulations.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Ahmed, I., Zia, M. A., Hussain, M. A., Akram, Z., Naveed, M. T., & Nowrouzi, A. (2016). Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. Journal of Radiation Research and Applied Sciences, 9(2), 148-154. https://doi.org/10.1016/j.jrras.2015.11.003
Al-Owaisi, M., Al-Hadiwi, N., & Khan, S. A. (2014). GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pacific Journal of Tropical Biomedicine, 4(12), 964-970. https://doi.org/10.12980/APJTB.4.201414B295
Bhatt, S. C., Kumar, V., Naik, B., Gupta, A. K., Saris, P. E. J., Kumar, V., Rajput, V., & Rustagi, S. (2024). Ficus auriculata Lour., an underutilized nonconventional alternative fruit to Ficus carica with nutraceutical potential. Discover Sustainability, 5(1), Article 254. https://doi.org/10.1007/s43621-024-00480-3
Boulila, A., Hassen, I., Haouari, L., Mejri, F., Amor, I. B., Casabianca, H., & Hosni, K. (2015). Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Industrial Crops and Products, 74, 485-493. https://doi.org/10.1016/j.indcrop.2015.05.050
Cádiz‐Gurrea, M. D. L. L., Zengin, G., Kayacık, O., Lobine, D., Mahomoodally, M. F., Leyva‐Jiménez, F. J., & Segura‐Carretero, A. (2019). Innovative perspectives on Pulicaria dysenterica extracts: phyto‐pharmaceutical properties, chemical characterization and multivariate analysis. Journal of the Science of Food and Agriculture, 99(13), 6001-6010. https://doi.org/10.1002/jsfa.9875
Casazza, A. A., Aliakbarian, B., & Perego, P. (2011). Recovery of phenolic compounds from grape seeds: Effect of extraction time and solid–liquid ratio. Natural Product Research, 25(18), 1751-1761. https://doi.org/10.1080/14786419.2010.524889
Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. https://doi.org/10.1016/j.copbio.2011.08.007
Dai, T. D., Tam, N. T., Huong, T. T. G., Tuyet, N. T., & Van, D. T. (2020). Triterpenoids and phenolics from the leaves of Ficus hirta Vahl. in Tuyen Quang Province, Vietnam. International Journal of the Science of Food and Agriculture, 4(2), 138-142.
Durrani, A. K., Khalid, M., Raza, A., Rasool, I. F. U., Khalid, W., Akhtar, M. N., Khan, A. A., Abdullah, Z., & Khadijah, B. (2024). Clinical improvement, toxicity and future prospects of β-sitosterol: a review. CyTA-Journal of Food, 22(1), Article 2337886. https://doi.org/10.1080/19476337.2024.2337886
Fernández, K., Vega, M., & Aspé, E. (2015). An enzymatic extraction of proanthocyanidins from País grape seeds and skins. Food Chemistry, 168, 7-13. https://doi.org/10.1016/j.foodchem.2014.07.021
Fu, Y.-J., Liu, W., Zu, Y.-G., Tong, M.-H., Li, S.-M., Yan, M.-M., Efferth, T., & Luo, H. (2008). Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanuscajan (L.) Millsp.] leaves. Food Chemistry, 111(2), 508-512. https://doi.org/10.1016/j.foodchem.2008.04.003
Gaire, B. P., Lamichhane, R., Sunar, C. B., Shilpakar, A., Neupane, S., & Panta, S. (2011). Phytochemical screening and analysis of antibacterial and antioxidant activity of Ficus auriculata (Lour.) stem bark. Pharmacognosy Journal, 3(21), 49-55. https://doi.org/10.5530/pj.2011.21.8
Genser, B., Silbernagel, G., De Backer, G., Bruckert, E., Carmena, R., Chapman, M. J., Deanfield, J., Descamps, O. S., Rietzschel, E. R., Dias, K. C., & März, W. (2012). Plant sterols and cardiovascular disease: a systematic review and meta-analysis. European Heart Journal, 33(4), 444-451. https://doi.org/10.1093/eurheartj/ehr441
Gligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G., & Ferreira, I. C. F. R. (2019). Enzyme-assisted extractions of polyphenols – a comprehensive review. Trends in Food Science and Technology, 88, 302-315. https://doi.org/10.1016/j.tifs.2019.03.029
Ince, A. E., Sahin, S., & Sumnu, G. (2014). Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. Journal of Food Science and Technology, 51, 2776-2782. https://doi.org/10.1007/s13197-012-0828-3
Islam, M. R., Kamal, M. M., Kabir, M. R., Hasan, M. M., Haque, A. R., & Hasan, S. M. K. (2023). Phenolic compounds and antioxidants activity of banana peel extracts: Testing and optimization of enzyme-assisted conditions. Measurement: Food, 10, Article 100085. https://doi.org/10.1016/j.meafoo.2023.100085
Kallio, J., Jaakkola, M., Mäki, M., Kilpeläinen, P., & Virtanen, V. (2012). Vitamin C inhibits Staphylococcus aureus growth and enhances the inhibitory effect of quercetin on growth of Escherichia coli in vitro. Planta Medica, 78(17), 1824-1830. https://doi.org/10.1055/s-0032-1315388
Kamiloglu, S., & Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties, 18(3), 521-535. https://doi.org/10.1080/10942912.2013.833522
Kim, D.-O., Lee, K. W., Lee, H. J., & Lee, C. Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural and Food Chemistry, 50(13), 3713-3717. https://doi.org/10.1021/jf020071c
Kurç, M. A., Orak, H. H., Gülen, D., Caliskan, H., Argon, M., & Sabudak, T. (2023). Antimicrobial and antioxidant efficacy of the lipophilic extract of Cirsium vulgare. Molecules, 28(20), Article 7177. https://doi.org/10.3390/molecules28207177
Miron, T. L., Herrero, M., & Ibáñez, E. (2013). Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. Journal of Chromatography A, 1288, 1-9. https://doi.org/10.1016/j.chroma.2013.02.075
Morris, J., & Van Bay, A. (2002). An overview of the NTFP sub-sector in Vietnam. Non-Timber Forest Product Research Centre (NTFP-RC), Hanoi.
Paramanandam, V., Jagadeesan, G., Muniyandi, K., Manoharan, A. L., Nataraj, G., Sathyanarayanan, S., & Thangaraj, P. (2021). Comparative and variability analysis of different drying methods on phytochemical, antioxidant and phenolic contents of Ficus auriculata Lour. fruit. Phytomedicine Plus, 1(3), Article 100075. https://doi.org/10.1016/j.phyplu.2021.100075
Pinelo, M., & Meyer, A. S. (2008). Enzyme-assisted extraction of antioxidants: Release of phenols from vegetal matrixes. Electronic Journal of Environmental, Agricultural and Food Chemistry, 7(8), 3217-3220.
Rasool, I. F. U, Aziz, A., Khalid, W., Koraqi, H., Siddiqui, S. A., Al-Farga, A., Lai, W.-F., & Ali, A. (2023). Industrial application and health prospective of fig (Ficus carica) by-products. Molecules, 28(3), Article 960. https://doi.org/10.3390/molecules28030960
Shahinuzzaman, M., Akhtar, P., Amin, N., Ahmed, Y., Anuar, F. H., Misran, H., & Akhtaruzzaman, M. (2021). New insights of phenolic compounds from optimized fruit extract of Ficus auriculata. Scientific Reports, 11(1), Article 12503. https://doi.org/10.1038/s41598-021-91913-w
Stanek-Wandzel, N., Krzyszowska, A., Zarębska, M., Gębura, K., Wasilewski, T., Hordyjewicz-Baran, Z., & Tomaka, M. (2024). Evaluation of cellulase, pectinase, and hemicellulase effectiveness in extraction of phenolic compounds from grape pomace. International Journal of Molecular Sciences, 25(24), Article 13538. https://doi.org/10.3390/ijms252413538
Stochmal, A., Skalski, B., Pietukhov, R., Sadowska, B., Rywaniak, J., Wójcik-Bojek, U., Grabarczyk, Ł., Żuchowski, J., & Olas, B. (2021). Evaluation of antimicrobial, antioxidant, and cytotoxic activity of phenolic preparations of diverse composition, obtained from Elaeagnus rhamnoides (L.) A. Nelson leaf and twig extracts. Molecules, 26(10), Article 2835. https://doi.org/10.3390/molecules26102835
Tran, C. H., Nghiem, M. T., Dinh, A. M. T., Dang, T. T. N., Van Do, T. T., Chu, T. N., Mai, T. H., & Phan, V. M. (2023). Optimization conditions of ultrasound‐assisted extraction for phenolic compounds and antioxidant activity from Rubus alceifolius Poir leaves. International Journal of Food Science, 2023(1), Article 7576179. https://doi.org/10.1155/2023/7576179
Veberic, R., Colaric, M., & Stampar, F. (2008). Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chemistry, 106(1), 153-157. https://doi.org/10.1016/j.foodchem.2007.05.061
Yazdi, A. P. G., Barzegar, M., Sahari, M. A., & Gavlighi, H. A. (2019). Optimization of the enzyme‐assisted aqueous extraction of phenolic compounds from pistachio green hull. Food Science and Nutrition, 7(1), 356-366. https://doi.org/10.1002/fsn3.900
Zhang, Z.-R., Yang, X., Li, W.-Y., Peng, Y.-Q., & Gao, J. (2022). Comparative chloroplast genome analysis of Ficus (Moraceae): Insight into adaptive evolution and mutational hotspot regions. Frontiers in Plant Science, 13, Article 965335. https://doi.org/10.3389/fpls.2022.965335
Zhong, L., Yuan, Z., Rong, L., Zhang, Y., Xiong, G., Liu, Y., & Li, C. (2019). An optimized method for extraction and characterization of phenolic compounds in Dendranthema indicum var. aromaticum flower. Scientific Reports, 9(1), Article 7745. https://doi.org/10.1038/s41598-019-44102-9