Modification of Nata De Coco Composited with Cow Hoof Keratin as a Candidate for Proton Conducting Membrane

Main Article Content

Irfan Gustian
Gusmi Susriati
Ria Nurwidiyani
Teja Dwi Sutanto
Asdim

Abstract

Proton conducting membranes based on nata de coco (bacterial cellulose) and cow hoof keratin were synthesized. Nata de coco was produced by fermentation with Acetobacter xylinum bacteria and cow hoof keratin obtained from the hydrolysis of cow hoof using NaOH solvent. Membranes were synthesized with variations in the mass ratios of nata de coco: cow hoof keratin, namely 4.5:0.5, 4.7:0.3. 4.0:1.0. The proton conducting membranes were characterized by functional group analysis with Fourier transform infrared spectroscopy (FTIR), diffractogram patterns were observed using X-ray diffraction (XRD), and proton conductivity was tested at temperatures of 25°C, 40°C, 60°C and 80°C. The degree of swelling and methanol permeability were also analyzed. The FTIR spectrum results showed that physical interactions appeared at the peak of 3000-3500 cm-1. The results of the XRD diffractogram analysis showed that all variations of the composite membrane mass were semicrystalline originating from a combination of the crystalline phase of bacterial cellulose and the amorphous phase of cow hoof keratin. The highest degree of swelling was obtained at a mass ratio of 4.0:1.0 of 33.05% while the lowest methanol permeability was at a mass ratio of 4.5:0.5 of 2.1×10-9 mol/cm.s. For the proton conductivity of the composite of bacterial cellulose nata de coco and cow hoof keratin variation 4.0:1.0, the highest proton conductivity was obtained at 2.68×10-4 S/cm and at a temperature of 25°C. In short, the results of this study indicate that the composite membrane has the ability to conduct protons and has the potential to be developed as an alternative fuel cell.

Article Details

How to Cite
Gustian, I., Susriati, G., Nurwidiyani, R. ., Dwi Sutanto, T., & Asdim. (2025). Modification of Nata De Coco Composited with Cow Hoof Keratin as a Candidate for Proton Conducting Membrane. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0267501. https://doi.org/10.55003/cast.2025.267501
Section
Original Research Articles

References

Aslan, A., Çelik, S. Ü., & Bozkurt, A. (2009). Proton-conducting properties of the membranes based on poly (vinyl phosphonic acid) grafted poly (glycidyl methacrylate). Solid State Ionics. 180(23-25), 1240-1245. https://doi.org/10.1016/j.ssi.2009.07.003

Barjasteh, M., Dehnavi, S. M., Seyedkhani, S. A., Rahnamaee, S. Y., & Golizadeh, M. (2023). Improved biological activities of dual nanofibrous chitosan/bacterial cellulose wound dressing by a novel silver-based metal-organic framework. Surfaces and Interfaces, 36, Article 102631. https://doi.org/10.1016/j.surfin.2023.102631

Behrouznejad, B., Sadat, S. B., & Masaeli, E. (2024). The orchestration of sustained drug delivery by bacterial cellulose/gelatin nanocomposites reinforced with carboxylic carbon nanotubes. Carbohydrate Polymers, 333, Article 121917. https://doi.org/10.1016/j.carbpol.2024.121917

Doumeng, M., Makhlouf, L., Berthet, F., Marsan, O., Delbe, K., Denape, J., & Chabert, F. (2021). A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polymer Testing, 93, Article 106878. https://doi.org/10.1016/j.polymertesting.2020.106878

Edwards, P. P., Kuznetsov, V. L., David, W. I. F., & Brandon, N. P. (2008). Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy, 36(12), 4356-4362. https://doi.org/10.1016/j.enpol.2008.09.036

Fan, X., Gao, Y., He, W., Hu, H., Tian, M., Wang, K., & Pan, S. (2016). Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers, 151, 1068-1072. https://doi.org/10.1016/j.carbpol.2016.06.062

Gohari, A., Matori, A. N., Yusof, K. W., Toloue, I., & Sholagberu, A. T. (2018). The effect of fuel price increase on transport cost of container transport vehicles. International Journal of Geomate, 15(50), 174-181. https://doi.org/10.21660/2018.50.30814

Göktepe, F., Çelik, S. Ü., & Bozkurt, A. (2008). Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes. Journal of Non-Crystalline Solids, 354(30), 3637-3642. https://doi.org/10.1016/j.jnoncrysol.2008.03.023

Gustian, I., Widiyati, E., Fitriani, D., & Triawan, D. A. (2022). Synthesis and characterization of proton-conducting membranes based on bacterial cellulose and human hair keratin. Rasayan Journal of Chemistry, Special Issue, 59-64. http://doi.org/10.31788/RJC.2022.1558067

Gustian, I., Simalango, A., Triawan, D. A., Putranto, A. M. H., & Asdim. (2023). Synthesis and characterization of proton-conducting membranes based on bacterial cellulose and human nail keratin. e-Polymers, 23, Article 20230040. https://doi.org/10.1515/epoly-2023-0040

Hartrianti, P., Nguyen, L. T. H., Johanes, J., Chou, S. M., Zhu, P., Tan, N. S., Tang, M. B. Y., & Ng, K. W. (2016). Fabrication and characterization of a novel crosslinked human keratin-alginate sponge. Journal of Tissue Engineering and Regenerative Medicine, 11(9), 2590-2602. https://doi.org/10.1002/term.2159

Halib, N., Amin, M, C, I, M. & Ahmad, I. (2012). Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malaysiana, 41(2), 205-211.

Herawati, H., Kamsiati, E., Widyaputri, S., & Sutanto. (2020). Physic-chemical characteristic of nata de coco. IOP Conference Series: Earth and Environmental Science, 458, Article 012014. https://doi.org/10.1088/1755-1315/458/1/012014

Hill, P., Brantley, H., & Dyke, M. V. (2010). Some properties of keratin biomaterials: Kerateines. Biomaterials, 31(4), 585-593. https://doi.org/10.1016/j.biomaterials.2009.09.076

Hossen, M. M., Hasan, M. S.,Sardar, M. R. I., Haider, J. B., Mottakin., Tammeveski., K., & Atanassov, P. (2023). State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Applied Catalysis B: Environmental, 325, Article 121733. https://doi.org/10.1016/j.apcatb.2022.121733

Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose - a masterpiece of nature’s arts. Journal of Materials Science, 35, 261-270. https://doi.org/10.1023/A:1004775229149

Inan, T. Y., Dogan, H., Unveren, E. E., & Eker, E. (2010). Sulfonated PEEK and fluorinated polymer based blends for fuel cell applications: Investigation of the effect of type and molecular weight of the fluorinated polymers on the membrane’s properties. International Journal of Hydrogen Energy, 35(21), 12038-12053. https://doi.org/10.1016/j.ijhydene.2010.07.084

Iribarren, D., Gamboa, M. M., Manzano, J., & Dufour, J. (2016). Assessing the social acceptance of hydrogen for transportation in Spain: An unintentional focus on target population for a potential hydrogen economy. International Journal of Hydrogen Energy, 41(10), 5203-5208. https://doi.org/10.1016/j.ijhydene.2016.01.139

Jung, H. Y., & Kim, J. W. (2012). Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC). International Journal of Hydrogen Energy, 37(17), 12580-12585. https://doi.org/10.1016/j.ijhydene.2012.05.121

Kakkar, P., Madhan, B., & Shanmugam, G. (2014). Extraction and characterization of keratin from bovine hoof: A potential material for biomedical applications. SpringerPlus, 3, Article 596. https://doi.org/10.1186/2193-1801-3-596

Kida, K., Morimura, S., Noda, J., Nishida, Y., Imai, T., & Otagiri, M. (1995). Enzymatic hydrolysis of the horn and hoof of cow and buffalo. Journal of Fermentation and Bioengineering, 80(5), 478-484. https://doi.org/10.1016/0922-338X(96)80923-8

Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561-1603. https://doi.org/10.1016/S0079-6700(01)00021-1

Kumar, S. L., Anandhavelu, S., Sivaraman, J., & Swathy, M. (2016). Development and characterization of keratin-based biofilm from bovine hoof waste for tissue engineering application. Tissue Engineering: Part A, 22(Suppl. 1), S49.

Lang, J. - Q., Liu, Q., & Ma, M. - G. (2025). Advanced development of smart stimulus-responsive cellulose-based composites through polymer science and nanoscale engineering: Preparation approaches and applications. Carbohydrate Polymers, 360, Article 123611. https://doi.org/10.1016/j.carbpol.2025.123611

Lestari, P., Elfrida, N., Suryani, A., & Suryadi, Y. (2014). Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan Journal of Biological Sciences, 7(1), 75-80. https://doi.org/10.12816/0008218

Li, L., Lin, J., Wu, N., Xie, S., Meng, C., Zheng, Y., Wang, X., & Zhao, Y. (2022). Review and outlook on the international renewable energy development. Energy and Built Environment, 3(2),139-157. https://doi.org/10.1016/j.enbenv.2020.12.002

Lobato-Peralta, D. R., Orugba, H. O., Arias, D., Sebastian, P. J., Okolie, J. A., & Okoye, P. U. (2025). Optimizing pre-carbonization temperature in sustainable cow hoof-derived activated carbon for high-performance supercapacitor electrodes. Surfaces and Interfaces, 56, Article 105701. https://doi.org/10.1016/j.surfin.2024.105701

Luk, H. T., Lei, H. M., Ng, W. Y., Ju, Y., & Lam. K. F. (2012). Techno-economic analysis of distributed hydrogen production from natural gas. Chinese Journal of Chemical Engineering, 20(3), 489-496. https://doi.org/10.1016/S1004-9541(11)60210-3

Martin, E., Shaheen, S. A., Lipman, T. E., & Lidicker, J. R. (2009). Behavioral response to hydrogen fuel cell vehicles and refueling: Results of California drive clinics. International Journal of Hydrogen Energy, 34(20), 8670-8680. https://doi.org/10.1016/j.ijhydene.2009.07.098

Masaoka, S., Ohe, T., & Sakota, N. (1993). Production of cellulose from glucose by Acetobacter xylinum. Journal of Fermentation and Bioengineering, 75(1), 18-22. https://doi.org/10.1016/0922-338X(93)90171-4

Mohite, B. V., & Patil, S. V. (2014). Physical structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydrate Polymers, 106, 132-141. https://doi.org/10.1016/j.carbpol.2014.02.012

Muthu, S. S., & Rathinamoorthy, R. (2021). Bacterial Cellulose. In S. S. Muthu, & R. Rathinamoorthy (Eds). Bacterial Cellulose. Sustainable Material for Textiles (pp. 19-60). Springer. https://doi.org/10.1007/978-981-15-9581-3_2

Nugroho, D. A. & Aji, P. (2015). Characterization of nata de coco produced by fermentation of immobilized Acetobacter xylinum. Agriculture and Agricultural Science Procedia, 3, 278-282. https://doi.org/10.1016/j.aaspro.2015.01.053

Nurfajriani, N., Pulungan, A. N., Yusuf, M., & Bukit, N. (2021). Preparation and characterization of bacterial cellulose from culturation of Acetobacter xylinum in coconut water media. Journal of Physics: Conference Series, 1811, Article 012070. https://doi.org/1010.1088/1742-6596/1811/1/012070

Olabi, A. G., Wilberforce, T., & Abdelkareem, M. A. (2021). Fuel cell application in the automotive industry and future perspective. Energy, 214, Article 118955. https://doi.org/10.1016/j.energy.2020.118955

Oluba, O. M., Obi, C. F., Akpor, O. B., Ojeaburu, S. I., Ogunrotimi, F. D., Adediran, A. A., & Oki, M. (2021). Fabrication and characterization of keratin starch biocomposite film from chicken feather waste and ginger starch. Scientifc Reports, 11(1), Article 8768. https://doi.org/10.1038/s41598-02188002-3

Phan, H. T., Nguyen, K. D., Nguyen, H. H. M., Dao, N. T., Le, P. T. K., & Le, H. V. (2023). Nata de coco as an abundant bacterial cellulose resource to prepare aerogels for the removal of organic dyes in water. Bioresource Technology Reports, 24, Article 101613. https://doi.org/10.1016/j.biteb.2023.101613

Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., & Parandi, E. (2017). Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate Polymers, 20, 193-201. https://doi.org/10.1016/j.carbpol.2016.09.027

Rahmayanti, H. D., Amalia, N., Munir, R., Yuliza, E., Utami, F. D., Sustini, E., & Abdullah, M. (2019). A study of physical and mechanical properties of nata de coco in the market. IOP Conference Series: Materials Science and Engineering, 599, Article 012031. https://doi.org/10.1088/1757-899X/599/1/012031

Russell, D. M., Coyle, J. J., Ruamsook, K., & Thomchick, E. A. (2014). The real impact of high transportation costs. Marketing and Logistics, 1(Supply Chain Quarterly), 30-36.

Sawitri, N., Ghufira, Fitriani, D., Banon, C., Deni Agus Triawan, D. A., & Gustian, I. (2021). Synthesis of proton-conducting membranes based on sulfonated polystyrene and bacterial cellulose. Journal of Physics: Conference Series, 1940, Article 012041. https://doi.org/10.1088/1742-6596/1940/1/012041

Sayers, Z., Michon, A. M., Sicre, P., & Koch, M. H.J. (1990). Structure and assembly of calf hoof keratin filaments. Journal of Structural Biology, 103(3), 212-224. https://doi.org/10.1016/1047-8477(90)90039-F

Sen, U., Bozkurt, A., & Ata, A. (2010). Nafion/poly(1-vinyl-1,2,4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 195(23), 7720-7726. https://doi.org/10.1016/j.jpowsour.2010.04.087

Sen, U., Çelik, S. Ü., Ata, A., & Bozkurt, A. (2008). Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/Azole composites. International Journal of Hydrogen Energy, 33(11), 2802-2815. https://doi.org/10.1016/j.ijhydene.2008.03.007

Sinirlioglu, D., Çelik, S. Ü., Muftuoglu, A. E., & Bozkurt, A. (2013). Novel membranes based on poly(5-(methacrylamido)tetrazole) and sulfonated polysulfone for proton exchange membrane fuel cells. Journal of Applied Polymer Science, 131(7), Article 48938. https://doi.org/10.1002/app.40107

Smitha, B., Sridhar, S., & Khan, A. A. (2006). Chitosan-poly (vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications. Journal of Power Source, 159(2), 846-854. https://doi.org/10.1016/j.jpowsour.2005.12.032

Sone, Y., Ekdunge, P., & Simonsson, D. (1996). Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. Journal of the Electrochemical Society, 143(4), 1254-1259. https://doi.org/10.1149/1.1836625

Tallei, T. E., Marfuah, S., Abas, A. H., Abram, A. A. D. P., Pasappa, N., Anggini, P. S., Soegoto, A. S., Wali, F., & Emran, T. B. (2022). Nata as a source of dietary fiber with numerous health benefits. Journal of Advanced Biotechnology and Experimental Therapeutics, 5(1), 189-197. https://doi.org/10.5455/jabet.2022.d107

Tanabe, T., Okitsu, N., & Yamauchi, K. (2004). Fabrication and characterization of chemically crosslinked keratin films. Materials Science and Engineering: C, 24(3), 441-446. https://doi.org/10.1016/j.msec.2003.11.004

Verschuren, P. G., Cardona, T. D., Nout, M. J. R., Gooijer, K. D. D., & Heuvel, J. C. V. D. (2000). Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles. Journal of Bioscience and Bioengineering, 89(5), 414-419. https://doi.org/10.1016/S1389-1723(00)89089-1

Wahid, F., Hu, X.-H., Chu, L.-Q., Jia, S.-R., Xie, Y.-Y., & Zhong, C. (2019). Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. International Journal of Biological Macromolecules, 122, 380-387. https://doi.org/10.1016/j.ijbiomac.2018.10.105

Yilma, K. T., Tesfaye, T., Enawgaw, H., Ayele, M., Limeneh, D. Y., Gibril, M., & Kong, F. (2022). Optimizing the extraction of keratin from cattle hoof using central composite design. Advances in Materials Science and Engineering, 2022, Article 4866467. https://doi.org/10.1155/2022/4866467

Zhang, J., Yang, Y., Deng, J., Wang, Y., Hu, Q., Li, C., & Liu, S. (2017). Dynamic profile of the microbiota during coconut water pre-fermentation for nata de coco production. LWT - Food Science and Technology, 81, 87-93. https://doi.org/10.1016/j.lwt.2017.03.036