Physicochemical and Bacteriological Properties of Water from Owo Local Government Area, Nigeria

Main Article Content

Ayodeji Sunday Adedeji
Timothy Olubisi Adejumo
Olusegun Richard Adeoyo

Abstract

Water is indispensable for healthy living, but it can be a vehicle for disease transmission. This study evaluated physicochemical properties, bacteria and their antibiotic resistance patterns in water from Owo Local Government Area. Twenty one water samples from boreholes (BW), stream (SW), and wells (WW) were collected using aseptic techniques. Bacteria were isolated and subjected to plate counts and identified using biochemical and molecular characterization methods, while antimicrobial susceptibility test (AST) was carried out using the Kirby-Bauer method. The physicochemical parameters including temperature, pH, electrical conductivity, total dissolved solids, dissolved oxygen, turbidity, chloride, and fluoride content were determined using standard methods. Analysis of Variance (ANOVA) was employed for data analysis (p-values < 0.05). The findings revealed that BW had the lowest plate count value of 3.3×103-6.0×103 cfu/mL, followed by WW (3.9×103 cfu/mL-8.7×103 cfu/mL), and SW (9.2×103 cfu/mL) while coliform counts ranged from 0 to 1600 MPN/100 mL. Borehole water samples were less contaminated (0-48 MPN/100 mL) when compared to SW and WW (150-1600 MPN/100 mL). AST results showed that some isolates (Salmonella spp., Citrobacter spp., Vibrio spp., Klebsiella spp., and Pseudomonas spp.) were resistant to more than three antibiotics and were thus considered to be multidrug resistant (MDR) bacteria. The physicochemical parameters were within the permisible limit (as recommended by WHO), except for chloride (122-255 mg/L) and flouride (0.39-1.99 mg/L) concentrations, which were above the standards (200 mg/L and 1.5 mg/L, respectively). Most of the water samples from wells and stream did not meet the standard criteria for drinking and domestic purposes. The presence of resistant bacteria poses serious health risks to individuals and the communities. Hence, this study recommends proper water treatment, monitoring, and good personal hygiene to avert the dangers associated with possible disease outbreaks in the study area.

Article Details

How to Cite
Adedeji, A. S., Adejumo, T. O. ., & Adeoyo, O. R. (2025). Physicochemical and Bacteriological Properties of Water from Owo Local Government Area, Nigeria. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0267605. https://doi.org/10.55003/cast.2025.267605
Section
Original Research Articles

References

Adegoke, H. A., Solihu, H., & Bilewu, S. O. (2023). Analysis of sanitation and waterborne disease occurrence in Ondo State, Nigeria. Environment, Development and Sustainability, 25(1), 11885-11903. https://doi.org/10.1007/s10668-022-02558-2

Adeoyo, O. R., & Omaku, J. O. (2022). Evaluation of bacteria obtained from private well water within Akungba-Akoko. Journal of Environmental Microbiology and Toxicology, 10(2), 23-26. https://doi.org/10.54987/jemat.v10i2.736

Adetunde, L. A., & Glover, R. L. K. (2010). Bacteriological quality of borehole water used by students’ of university for development studies, Navrongo Campus in Upper-East Region of Ghana. Current Research Journal of Biological Sciences, 2(6), 361-364.

Afunwa, R. A., Ezeanyinka, J., Afunwa, E. C., Udeh, A. S., Oli, N. A., & Unachukwu, M. (2020). Multiple antibiotic resistant index of Gram-negative bacteria from bird droppings in two commercial poultries in Enugu, Nigeria. Open Journal of Medical Microbiology, 10, 171-181. https://doi.org/10.4236/ojmm.2020.104015

Ajayi, A. O., & Adejumo, T. O. (2011). Microbiological assessment and some physico-chemical properties of water sources in Akungba-Akoko, Nigeria. Journal of Toxicology and Environmental Health Sciences, 3(13), 342-346.

Akin-Osanaiye, B. C., Ejide, M. S., & Joyce, E. (2018). Comparative analysis of pipe borne water and other sources of water in Gwagwalada Area Council, Federal Capital Territory, Abuja, Nigeria. Journal of Biology and Genetic Research, 4(1), 38-47.

Al-Abdan, M. A., Bin-Jumah, M. N., Ali, D., & Alarifi, S. (2021). Investigation of biological accumulation and eco-genotoxicity of bismuth oxide nanoparticle in fresh water snail Lymnaea luteola. Journal of King Saud University – Science, 33(2), Article 101355. https://doi:10.1016/j.jksus.2021.101355

Ali, D., Ibrahim, K. E., Hussain, S. A., & Abdel-Daim, M. M. (2021). Role of ROS generation in acute genotoxicity of azoxystrobin fungicide on freshwater snail Lymnaea luteola L. Environmental Science and Pollution Research International, 28(5), 5566-5574. https://doi.org/10.1007/s11356-020-10895-w

Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0

APHA (2017). Standard methods for the examination of water and wastewater. (23rd Ed.). American Public Health Association.

Armin, S., Fallah, F., Karimi, A., Karbasiyan, F., Alebouyeh, M., Tabatabaei, S. R., Rajabnejad, M., Ghanaie, R. M., Fahimzad, S. A., Abdollahi, N., Khodaei, H., & Azimi, L. (2023). Antibiotic susceptibility patterns for carbapenem-resistant Enterobacteriaceae. International Journal of Microbiology, 2023, Article 8920977. https://doi.org/10.1155/2023/8920977

Ashbolt, N. J., Amézquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Larsson, D. G. J., McEwen, S. A., Ryan, J. J., Schönfeld, J., Silley, P., Snape, J. R., Van den Eede, C., & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotics resistance. Environmental Health Perspectives, 121(9), 993-1001. https://doi.org/10.1289/ehp.1206316

Atmanto, Y. K. A. A., Paramita, K., & Handayani, I. (2022). Culture media. International Journal of Current Research in Science Engineering and Technology, 4(4), 2213-2225.

Atobatele, B. O., & Owoseni, A. (2023). Distribution of multiple antibiotic-resistant Gram-negative bacteria in potable water from hand-dug wells in Iwo, Nigeria. H2Open Journal, 6(1), 40-51. https://doi.org/10.2166/h2oj.2023.043

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.3389/fphar.2021.643972

Barghouthi, Z., & Amereih, S. (2017). Field method for estimation of fluoride in drinking groundwater by photometric measurement of spot on aluminium quinalizarin reagent paper. Arabian Journal of Chemistry, 10(Suppl. 2), S2919-S2925. https://doi.org/10.1016/j.arabjc.2013.11.024

Bello, O. O., Osho, A., Bankole, S. A., & Bello, T. K. (2013). Bacteriological and physicochemical analyses of borehole and well water sources in Ijebu-Ode, Southwestern Nigeria. IOSR Journal of Pharmacy and Biological Sciences, 8(2), 18-25. https://doi.org/10.9790/3008-0821825

Belotindos, L., Villanueva, M., Miguel, J. Jr., Bwalya, P., Harada, T., Kawahara, R., Nakajima, C., Mingala, C., & Suzuki Y. (2021). Prevalence and characterization of quinolone-resistance determinants in Escherichia coli isolated from food-producing animals and animal-derived food in the Philippines. Antibiotics, 10(4), Article 413. https://doi.org/10.3390/antibiotics10040413

Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: the environmental framework. Nature reviews. Microbiology, 13(5), 310–317. https://doi.org/10.1038/nrmicro3439

Berisha, N. L., Panovska, A. P., & Hajrulai-Musliu, Z. (2024). Antibiotic resistance and aquatic systems: Importance in public health. Water, 16(17), Article 2362. https://doi.org/10.3390/w16172362

Bilewu, O. F., Ayanda, I. O., & Ajayi, T. O. (2022). Assessment of physicochemical parameters in selected water bodies in Oyo and Lagos States. IOP Conference Series: Earth and Environmental Science, 1054, Article 012045. https://doi.org/10.1088/1755-1315/1054/1/012045

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13(1), 42-51. https://doi.org/10.1038/nrmicro3380

Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), Article 1340. https://doi.org/10.3390/molecules25061340

Bukar, A. M., Isa, M. A., Mustapha, A., Kyari, M. Z., & Ibrahim, F. K. (2015). Bacteriological analysis of sachet water in Maiduguri Metropolis. The Journal of Applied Science Research, 2(1), 20-25.

Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H., Pittet, D., & Participants of the 3rd World Healthcare-Associated Infections Forum. (2012). Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrobial Resistance and Infection Control, 1(1), Article 11. https://doi.org/10.1186/2047-2994-1-11

Chan, K.-G., Tiew, S.-Z., & Ng, C.-C. (2007). Rapid isolation method of soil bacilli and screening of their quorum quenching activity. Asia Pacific Journal of Molecular Biology and Biotechnology, 15(3), 153-156.

Chan, K.-G., Yin, W.-F., Sam, C.-K., & Koh, C.-L. (2009). A novel medium for the isolation of N-acylhomoserine lactone-degrading bacteria. Journal of Industrial Microbiology and Biotechnology, 36(2), 247-251. https://doi.org/10.1007/s10295-008-0491-x

Cheesbrough, M. (2010). District laboratory practice in tropical countries. (2nd Ed.). Cambridge University Press.

City Population. (2025). Population statistics for countries, administrative divisions, cities, urban areas and agglomerations – interactive maps and charts. https://www.citypopulation.de

CLSI. (2016). Performance standards for antimicrobial susceptibility testing. (26th Ed.). Clinical and Laboratory Standards Institute.

CLSI. (2020). Performance standards for antimicrobial susceptibility testing. (30th Ed.). Clinical and Laboratory Standards Institute.

EFSA. (2010). Scientific opinion on dietary reference values for water. European Food Safety Authority Journal, 8(3), Article 1459. https://doi.org/10.2903/j.efsa.2010.1459

Fasoranti, O. F., Afolami, O. I., & Bolaniran, T. (2017). Physicochemical and mineral properties of drinking water from rural settlements of Owo Local Government Area of Ondo State, Nigeria. Asian Journal of Physical and Chemical Sciences, 3(2), 1-8. https://doi.org/10.9734/AJOPACS/2017/36388

Ferdous, J., Rashid, R. B., Sultana, R., Saima, S., Prima, M. J., Begum, A., & Jensen, P. K. M. (2021). Is it human or animal? The origin of pathogenic E. coli in the drinking water of a low-income urban community in Bangladesh. Tropical Medicine and Infectious Disease 6(4), Article 181. https://doi.org/10.3390/tropicalmed6040181

Gautam, B. (2021). Microbiological quality assessment (including antibiogram and threat assessment) of bottled water. Food Science and Nutrition, 9(4), 1980-1988. https://doi.org/10.1002/fsn3.2164

Gupta, C. L., Blum, S. E., Kattusamy, K., Daniel, T., Druyan, S., Shapira, R., Krifucks, O., Zhu, Y.-G., Zhou, X.-Y., Su, J.-Q., & Cytryn, E. (2021). Longitudinal study on the effects of growth-promoting and therapeutic antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes. Microbiome, 9(1), Article 178. https://doi.org/10.1186/s40168-021-01136-4

Gwimbi, P., George, M., & Ramphalile, M. (2019). Bacterial contamination of drinking water sources in rural villages of Mohale Basin, Lesotho: exposures through neighborhood sanitation and hygiene practices. Environmental Health and Preventive Medicine, 24(1), Article 33. https://doi.org/10.1186/s12199-019-0790-z

Jamal, R., Mubarak, S., Sahulka, S. Q., Kori, J. A., Tajammul, A., Ahmed, J., Mahar, R. B., Olsen, M. S., Goel, R., & Weidhaas, J. (2020). Informing water distribution line rehabilitation through quantitative microbial risk assessment. The Science of the Total Environment, 739, Article 140021. https://doi.org/10.1016/j.scitotenv.2020.140021

Jannat, N., Mottalib, M. A., & Alam, M. N. (2019). Assessment of physicochemical properties of surface water of Mokeshbeel, Gazipur, Bangladesh. HSOA Journal of Environmental Science: Current Research, 2, Article 014. https://doi.org/10.24966/escr-5020/100014

Karki, D., & Thapa, Y. N. (2022). Assessing physico-chemical parameters of drinking water in Majkhola, Tansen, Palpa. International Journal of Applied Sciences and Biotechnology, 10(1), 60-70. https://doi.org/10.3126/ijasbt.v10i1.44161

Marcovecchio, J. E., Botte, S. E., & Frejie, R. H. (2007). Heavy metals, major metals, trace elements. In L. M. L. Nollet, L. S. P. De Gelder (eds.). Handbook of water analysis (2nd Ed., pp. 273-310). CRC Press. https://doi.org/10.1201/9781420006315

Michaelis, C., & Grohmann, E. (2023). Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics, 12(2), Article 328. https://doi.org/10.3390/antibiotics12020328

Mutuku, C., Gazdag, Z., & Melegh, S. (2022). Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World Journal of Microbiology and Biotechnology, 38(9), Article 152. https://doi.org/10.1007/s11274-022-03334-0

Nasr, J., Abdessamad, H., Mina, Haykal, T., Jamil, Y., Abboud, E., Mahdi, A., Asmar, R., Assaad, R. A., Alameddine, D., Bourji, A., Mahdi, M., Abdulaal, R., Tomassian, S., El Ahmadieh, H., Azzam, W., Mokhbat, J. E., Moghnieh, R., Rodriguez-Morales, A. J., & Husn, R. (2024). The epidemiology of Gram-negative bacteremia in Lebanon: a study in four hospitals. Annals of Clinical Microbiology and Antimicrobials 23, 90. https://doi.org/10.1186/s12941-024-00740-0

Negera, E., Nuro, G., & Kebede, M. (2017). Microbiological assessment of drinking water with reference to diarrheagenic bacterial pathogens in Shashemane Rural District, Ethiopia. African Journal of Microbiological Research, 11(6), 254-263.

Ngala, M. I., Amenchwi, A. G., Toh-Boyo, G. M., Laure, N. F., & Nfor, N. F. (2022). The physicochemical properties of surface water resources around fuel filling stations and auto-mobile repair workshops in Bamenda-City, North West Region of Cameroon.

International Journal of Biodiversity and Conservation, 14(4), 165-172. https://doi.org/10.5897/IJBC2022.1546

NSDWQ (2017). Nigeria standard for drinking water quality. Nigeria Industrial Standard.

Odonkor, S. T., Simpson, S. V., Morales, Medina W. R. M., & Fahrenfeld N. L. (2022). Antibiotic-resistant bacteria and resistance genes in isolates from Ghanaian drinking water sources. Journal of Environmental and Public Health, 6, Article 2850165. https://doi.org/10.1155/2022/2850165

Okoro, N., Omeje, E. O., & Osadebe, P. O. (2017). Comparative analysis of three borehole water sources in Nsukka urban area, Enugu State, Nigeria. Resources and Environment, 7(4), 110-114.

Oladeji, S. O., Grace, O., & Ayodeji, A. A. (2022). Community participation in conservation and managementof cultural heritage resources in Yoruba Ethnic Group of South Western Nigeria. SAGE Open, 12(4), 1-25. https://doi.org/10.1177/21582440221130987

Onduru, O. G., Aboud, S., Nyirenda, T. S., Rumisha, S. F., & Mkakosya, R. S. (2021). Antimicrobial susceptibility testing profiles of ESBL-producing Enterobacterales isolated from hospital and community adult patients in Blantyre, Malawi. IJID Regions, 1, 47-52. https://doi.org/10.1016/j.ijregi.2021.08.002

Osiemo, M. M., Ogendi, G. M., & M'Erimba, C. (2019). Microbial quality of drinking water and prevalence of water-related diseases in Marigat Urban Centre, Kenya. Environmental Health Insights, 13, Article 1178630219836988. https://doi.org/10.1177/1178630219836988

Osunla, C. A., & Okoh, A. I. (2017). Vibrio pathogens: A public health concern in rural water resources in Sub-Saharan Africa.

International Journal of Environmental Research and Public Health, 14(10), Article 1188. https://doi.org/10.3390/ijerph14101188

Prüss-Ustün, A., Wolf, J., Bartram, J., Clasen, T., Cumming, O., Freeman, M. C., Gordon, B., Hunter, P. R., Medlicott, K., & Johnston, R. (2019). Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. International Journal of Hygiene and Environmental Health, 222(5), 765-777. https://doi.org/10.1016/j.ijheh.2019.05.004

Ranjbar, R., Tavanania, S., Sabokbar, A., & Khamesipour, F. (2019). Prevalence and characterization of plasmid-mediated quinolone resistance genes among Escherichia coli strains isolated from different water sources in Alborz Province, Iran. The Indonesian Biomedical Journal, 11(1), 36-41. https://doi.org/10.18585/inabj.v11i1.484

Rossolini, G. M., Arena, F., & Giani, T. (2017). 138-Mechanisms of antibacterial resistance. In J. Cohen, W. G. Powderly, & S. M. Opal (Eds.). Infectious Diseases, Vol 2 (4th Ed., pp. 1181-1196.e1). Elsevier. https://doi.org/10.1016/B978-0-7020-6285-8.00138-6

Salvador-Membreve, D. M., & Rivera, W. L. (2021). Predominance of blaTEM and tetA genes in antibiotic-resistant Escherichia coli isolates from Laguna Lake, Philippines. Journal of Water, Sanitation and Hygiene for Development, 11(5), 814-823. https://doi.org/10.2166/washdev.2021.067

Seth, O. N., Tagbor, T. A., & Bernard, O. (2013). Assessment of chemical quality of groundwater over some rock types in Ashanti region, Ghana. American Journal of Scientific and Industrial Research, 4(4), 414-419.

Spellman, F. R. (2017). The drinking water handbook. (3rd Ed.). CRC Press.

Trindade, L. C. D., Marques, E., Lopes, D. B., & Ferreira, M. A. D. S. V. (2007). Development of a molecular method for detection and identification of Xanthomonas campestris pv. viticola. Summa Phytopathologica 33(1), 16-23. https://doi.org/10.1590/S0100-54052007000100002

WHO. (2017). Guidelines for drinking-water quality. (4th Ed.) World Health Organization.

WHO. (2024). Guidelines for drinking-water quality: small water supplies. World Health Organization.

WHO/UNICEF. (2021). Progress on household drinking water, sanitation and hygiene 2000-2020: Five years into the SDGs. World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF).