Evaluation of the Antioxidant and Antihyperglycemic Activity: A Comparative Study of Shallot (Allium ascalonicum L.) Peel and Bulb Ethanol Extracts

Main Article Content

M. Rifqi Efendi
Fadila Dwiyanti
Oktavionita
Mesa Sukmadani Rusdi
Armenia

Abstract

Diabetes Mellitus (DM), known as hyperglycemia, is a growing global health concern.  Among medicinal plants explored for their potential in diabetes treatment, Allium ascalonicum L. (shallot) has gained significant attention. This study investigated the effectiveness of shallot peel and bulb extracts as antihyperglycemia activity in alloxan-induced diabetic rats. The total phenolic and flavonoid contents, and antioxidant activity of the extracts were also assessed. Shallot peel and bulb were extracted using ethanol-based maceration, followed by total phenolic content (TPC) and total flavonoid content (TFC) evaluation using the Folin–Ciocalteu and aluminium chloride methods, respectively. Antioxidant activity was determined by the DPPH radical scavenging assay. Diabetic rats were divided into four groups: negative control, positive control (metformin), and two treatment groups receiving 150 mg/kg of shallot peel or bulb extract for 10 days. Parameters such as fasting blood glucose, body weight, urine volume, food, and water intake were also monitored. The results showed significantly higher TPC in peel (347.6±1.7 mg GAE/g) than bulb (78.7±1.90 mg GAE/g), with p = 0.001 (p < 0.05). Peel also had higher TFC (56.60±1.63 mg QE/g vs. 30.4±0.81 mg QE/g in bulb), with p = 0.001 (p < 0.05) and superior DPPH scavenging capacity (IC50 of 124.814 μg/mL compared to 1,712 μg/mL in bulb extract). Both extracts significantly reduced fasting blood glucose levels, with the peel extract being the most effective in glycemic control, while the bulb extract showed greater improvement in diabetic symptoms. These findings suggest that ethanol extracts of shallot peels and bulbs are promising natural antioxidants with antihyperglycemic properties. Their phenolic and flavonoid richness supports their potential in diabetes management.

Article Details

How to Cite
Efendi, M. R., Dwiyanti, F., Oktavionita, Rusdi, M. S., & Armenia. (2025). Evaluation of the Antioxidant and Antihyperglycemic Activity: A Comparative Study of Shallot (Allium ascalonicum L.) Peel and Bulb Ethanol Extracts. CURRENT APPLIED SCIENCE AND TECHNOLOGY, e0267970. https://doi.org/10.55003/cast.2025.267970
Section
Original Research Articles

References

Aberoumand, A., & Deokule, S. S. (2008). Comparison of phenolic compounds of some edible plants of Iran and India. Pakistan Journal of Nutrition, 7(4), 582-585. https://doi.org/10.3923/pjn.2008.582.585

Albishi, T., John, J. A., Al-Khalifa, A. S., & Shahidi, F. (2013). Antioxidative phenolic constituents of skins of onion varieties and their activities. Journal of Functional Foods, 5(3), 1191-1203. https://doi.org/10.1016/j.jff.2013.04.002

Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their antidiabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), Article 430. https://doi.org/10.3390/biom9090430

American Diabetes Association. (2024). Diagnosis and classification of diabetes: standards of care in diabetes-2024. Diabetes Care, 47(Suppl. 1), S20-S42. https://doi.org/10.2337/dc24-S002

Ansari, P., Choudhury, S. T., Seidel, V., Rahman, A. B., Aziz, M. A., Richi, A. E., Rahman, A., Jafrin, U. H., Hannan, J. M. A., & Abdel-Wahab, Y. H. A. (2022). Therapeutic potential of quercetin in the management of type-2 diabetes mellitus. Life, 12(8), Article 1146. https://doi.org/10.3390/life12081146

Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. https://doi.org/10.1016/j.jsps.2015.03.013

Aucott, L. S., Philip, S., Avenell, A., Afolabi, E., Sattar, N., & Wild, S. (2016). Patterns of weight change after the diagnosis of type 2 diabetes in Scotland and their relationship with glycaemic control, mortality and cardiovascular outcomes: a retrospective cohort study. BMJ Open, 6(7), Article e010836. https://doi.org/10.1136/bmjopen-2015-010836

Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042

Bonaccorsi, P., Caristi, C., Gargiulli, C., & Leuzzi, U. (2008). Flavonol glucosides in Allium species: A comparative study by means of HPLC–DAD–ESI-MS–MS. Food Chemistry, 107(4), 1668-1673. https://doi.org/10.1016/j.foodchem.2007.09.053

Chadorshabi, S., Hallaj-Nezhadi, S., & Ghasempour, Z. (2022). Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chemistry, 386, Article 132737. https://doi.org/10.1016/j.foodchem.2022.132737

Chakraborty, A. J., Uddin, T. M., Zidan, B. M. R. M., Mitra, S., Das, R., Nainu, F., Dhama, K., Roy, A., Hossain, M. J., Khusro, A., & Emran, T. B. (2022). Allium cepa: A treasure of bioactive phytochemicals with prospective health benefits. Evidence-Based Complementary and Alternative Medicine, 2022, Article 4586318. https://doi.org/10.1155/2022/4586318

Crnivec, I. G. O., Skrt, M., Šeremet, D., Sterniša, M., Farčnik, D., Štrumbelj, E., Poljanšek, A., Cebin, N., Pogačnik, L., Možina, S. S., Humar, M., Komes, D., & Ulrih, N. P. (2021). Waste streams in onion production: Bioactive compounds, quercetin and use of antimicrobial and antioxidative properties. Waste Management, 126, 476-486. https://doi.org/10.1016/j.wasman.2021.03.033

Dhandapani, S., Subramanian, V. R., Rajagopal, S., & Namasivayam, N. (2002). Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats. Pharmacological Research, 46(3), 251-255. https://doi.org/10.1016/S1043-6618(02)00131-7

Directorate of Prevention and Control of Non-Communicable Diseases, M. of H. R. of I. (2016). Diabetes fakta dan angka. Direktorat Pencegahan dan Pengendalian Penyakit Tidak Menular (P2PTM) Kementerian Kesehatan.

Eid, H. M. & Haddad, P. S. (2017). The antidiabetic potential of quercetin: Underlying mechanisms. Current Medicinal Chemistry, 24(4), 355-364. https://doi.org/10.2174/0929867323666160909153707

Flieger, J., Flieger, W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials, 14(15), Article 4135. https://doi.org/10.3390/ma14154135

Galavi, A., Hosseinzadeh, H., & Razavi, B. M. (2021). The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review. Iranian Journal of Basic Medical Sciences, 24(1), 3. https://doi.org/10.22038/IJBMS.2020.46956.10843

Golovinskaia, O., & Wang, C.-K. (2023). The hypoglycemic potential of phenolics from functional foods and their mechanisms. Food Science and Human Wellness, 12(4), 986-1007. https://doi.org/10.1016/j.fshw.2022.10.020

Haddad, F., Dokmak, G., Bader, M., & Karaman, R. (2023). A comprehensive review on weight loss associated with antidiabetic medications. Life, 13(4), Article 1012. https://doi.org/10.3390/life13041012

Hajleh, M. N. A., Khleifat, K. M., Alqaraleh, M., Al-Hraishat, E., Al-Limoun, M. O., Qaralleh, H., & Al-Dujaili, E. A. S. (2022). Antioxidant and antihyperglycemic effects of Ephedra foeminea aqueous extract in streptozotocin-induced diabetic rats. Nutrients, 14(11), Article 2338. https://doi.org/10.3390/nu14112338

Hamilton, K. E., Rekman, J. F., Gunnink, L. K., Busscher, B. M., Scott, J. L., Tidball, A. M., Stehouwer, N. R., Johnecheck, G. N., Looyenga, B. D., & Louters, L. L. (2018). Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie, 151, 107-114. https://doi.org/10.1016/j.biochi.2018.05.012

Ibrahim, A. A., Abdussalami, M. S., Appah, J., Umar, A. H., Muhammad, A. U., Haruna, S., & Ibrahim, A. A. (2023). Evaluation of antihyperglycemic activity of aqueous stem bark extract of Boswellia dalzielii in alloxan-induced diabetic Wistar rats. Future Journal of Pharmaceutical Sciences, 9(1), Article 7. https://doi.org/10.1186/s43094-023-00458-4

International Diabetes Federation. (2021). IDF diabetes atlas (10th ed.). IDF. https://diabetesatlas.org/idfawp/resource-files/2021/ 07/ IDF_Atlas_10th_Edition_2021. pdf

Kamtekar, S., Keer, V., & Patil, V. (2014). Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science, 4(9), 061-065.

Kar, A., Choudhary, B. K., & Bandyopadhyay, N. G. (2003). Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. Journal of Ethnopharmacology, 84(1), 105-108. https://doi.org/10.1016/S0378-8741(02)00144-7

Knudsen, L. B. (2010). Liraglutide: the therapeutic promise from animal models. The International Journal of Clinical Practice, 64(Suppl. 167), 4-11. https://doi.org/10.1111/j.1742-1241.2010.02499.X

Kooti, W., Farokhipour, M., Asadzadeh, Z., Ashtary-Larky, D., & Asadi-Samani, M. (2016). The role of medicinal plants in the treatment of diabetes: a systematic review. Electronic Physician, 8(1), 1832-1842. https://doi.org/10.19082/1832

Kwak, J.-H., Seo, J. M., Kim, N.-H., Arasu, M. V., Kim, S., Yoon, M. K., & Kim, S.-J. (2017). Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi Journal of Biological Sciences, 24(6), 1387-1391. https://doi.org/10.1016/j.sjbs.2016.05.014

Kwon, O., Eck, P., Chen, S., Corpe, C. P., Lee, J.-H., Kruhlak, M., & Levine, M. (2007). Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. The FASEB Journal, 21(2), 366-377. https://doi.org/10.1096/fj.06-6620com

Losada-Barreiro, S., Sezgin-Bayindir, Z., Paiva-Martins, F., & Bravo-Díaz, C. (2022). Biochemistry of antioxidants: Mechanisms and pharmaceutical applications. Biomedicines, 10(12), Article 3051. https://doi.org/10.3390/biomedicines10123051

Maryuni, D. R., Prameswari, D. A., Astari, S. D., Sari, S. P., & Putri, D. N. (2022). Identification of active compounds in red onion (Allium ascalonicum l.) peel extract by LC-ESI-QTOF-MS/MS and determination of its antioxidant activity. Jurnal Teknologi Hasil Pertanian, 15(1), 20-33. https://doi.org/10.20961/jthp.v15i1.55451

Mehdi, M., Javad, H., Seyed-Mostafa, H.-Z., Mohammadreza, M. & Ebrahim, M. (2013). The effect of Persian shallot (Allium hirtifolium Boiss.) extract on blood sugar and serum levels of some hormones in diabetic rats. Pakistan Journal of Pharmaceutical Sciences, 26(2), 397-402.

Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A., dos Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127-130. https://doi.org/10.1002/ptr.687

Ministry of Health Indonesia. (2017). Indonesian herbal pharmacopeia. In Directorate General of Pharmacy and Medical Devices (2nd Ed.). Directorate General of Pharmacy and Medical Devices, Ministry of Health of Indonesia.

Mobin, L., Haq, M. A., Ali, R., Naz, S., & Saeed, S. G. (2021). Antibacterial and antioxidant potential of the phenolic extract and its fractions isolated from Allium ascalonicum (onion) peel. Natural Product Research, 36(12), 3163-3167. https://doi.org/10.1080/14786419.2021.1948040

Moldovan, C., Frumuzachi, O., Babotă, M., Barros, L., Mocan, A., Carradori, S., & Crişan, G. (2022). Therapeutic uses and pharmacological properties of shallot (Allium ascalonicum): A systematic review. Frontiers in Nutrition, 9, Article 903686. https://doi.org/10.3389/fnut.2022.903686

Moradabadi, L., Kouhsari, S. M., & Sani, M. F. (2013). Hypoglycemic effects of three medicinal plants in experimental diabetes: inhibition of rat intestinal α-glucosidase and enhanced pancreatic insulin and cardiac Glut-4 mRNAs expression. Iranian Journal of Pharmaceutical Research, 12(3), 387-397. https://doi.org/10.22037/ijpr.2013.1335

Niisato, N., & Marunaka, Y. (2023). Therapeutic potential of multifunctional myricetin for treatment of type 2 diabetes mellitus. Frontiers in Nutrition, 10, Article 1175660. https://doi.org/10.3389/fnut.2023.1175660

Phuyal, N., Jha, P. K., Raturi, P. P., & Rajbhandary, S. (2020). Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. The Scientific World Journal, 2020(1), Article 8780704. https://doi.org/10.1155/2020/8780704

Pistrosch, F., Natali, A., & Hanefeld, M. (2011). Is hyperglycemia a cardiovascular risk factor? Diabetes Care, 34(Suppl. 2), S128-S131. https://doi.org/10.2337/dc11-S207

Price, K. R., & Rhodes, M. J. C. (1997). Analysis of the major flavonol glycosides present in four varieties of onion (Allium cepa) and changes in composition resulting from autolysis. Journal of the Science of Food and Agriculture, 74(3), 331-339.

Prince, P. S. M., & Menon, V. P. (2001). Antioxidant action of Tinospora cordifolia root extract in alloxan diabetic rats. Phytotherapy Research, 15(3), 213-218. https://doi.org/10.1002/ptr.707

Proteggente, A. R., Pannala, A. S., Paganga, G., Van Buren, L., Wagner, E., Wiseman, S., Van De Put, F., Dacombe, C., & Rice-Evans, C. A. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36(2), 217-233. https://doi.org/10.1080/10715760290006484

Ríos, J. L., Francini, F., & Schinella, G. R. (2015). Natural products for the treatment of type 2 diabetes mellitus. Planta Medica, 81(12-13), 975-994. https://doi.org/10.1055/S-0035-1546131

Rodino, S., & Butu, M. (2019). Herbal extracts—new trends in functional and medicinal beverages. In A. M. Grumezescu & A. Maria (Eds.). Functional and medicinal beverages. Volume 11: The Science of Beverages (pp. 73-108). Academic Press. https://doi.org/10.1016/B978-0-12-816397-9.00003-0

Shafras, M., Sabaragamuwa, R., & Suwair, M. (2024). Role of dietary antioxidants in diabetes: An overview. Food Chemistry Advances, 4, Article 100666. https://doi.org/10.1016/j.focha.2024.100666

Sharma, A. K., & Gupta, R. (2017). Antihyperglycemic activity of aqueous extracts of some medicinal plants on Wistar rats. Journal of Diabetes and Metabolism, 8(7), Article 1000752. https://doi.org/10.4172/2155-6156.1000752

Suh, H. J., Lee, J. M., Cho, J. S., Kim, Y. S., & Chung, S. H. (1999). Radical scavenging compounds in onion skin. Food Research International, 32(10), 659-664. https://doi.org/10.1016/S0963-9969(99)00141-6

Tamtaji, O. R., Hosseinzadeh, H., Talaei, S. A., Behnam, M., Firoozeh, S. M. T., Taghizadeh, M., & Alipoor, R. (2017). Protective effects of red onion (Allium cepa) ethanolic extract on learning and memory impairments in animal models of diabetes. Galen Medical Journal, 6(3), 249-257. https://doi.org/10.31661/gmj.v6I3.909

Tijjani, H., Zangoma, M. H., Mohammed, Z. S., Obidola, S. M., Egbuna, C., & Abdulai, S. I. (2020). Polyphenols: Classifications, biosynthesis and bioactivities. In C. Egbuna, & G. D. Tupas (Eds.). Functional Foods and Nutraceuticals (pp. 389-414). Springer. https://doi.org/10.1007/978-3-030-42319-3_19

Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038

Yu, M., Gouvinhas, I., Rocha, J., & Barros, A. I. R. N. A. (2021). Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Scientific Reports, 11(1), Article 10041. https://doi.org/10.1038/s41598-021-89437-4

Zatalia, S. R., & Sanusi, H. (2013). The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Medica Indonesiana, 45(2), 141-147.

Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), Article e13394. https://doi.org/10.1111/jfbc.13394

Zhao, Z., Chen, Y., Li, X., Zhu, L., Wang, X., Li, L., Sun, H., Han, X., & Li, J. (2022). Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora. Biomedicine and Pharmacotherapy, 153, Article 113530. https://doi.org/10.1016/j.biopha.2022.113530