Genome Editing to Enhance Disease Resistance in Livestock

Main Article Content

Teerajet Laohasatian
Supawadee Manatrinon
Pawat Seritrakul

Abstract

Animal diseases significantly impact livestock production, agriculture, the economy, as well as exposing human to foodborne illnesses that originate from animals. Recently, potential new techniques have emerged that could efficiently prevent and treat animal diseases, one of which is genome editing, which is a technique that can alter genetic information by inserting or removing parts of target genes. Currently, the most widely used genome editing techniques include Zinc-finger nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs), and Clustered regulatory interspaced short palindromic repeats (CRISPRs).  This article reviews genome editing techniques (ZFNs, TALENs, and CRISPRs) that have been employed for editing the genomes of livestock. Overall, genome editing has been shown to increase disease resistance, either by removing the causative part of the genes or by replacing them with a resistance cassette, thus enhancing disease resistance in livestock.

Article Details

Section
Review Article

References

Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science (80-. ). 315:1709–1712.
BESSMAN, M. J., I. R. LEHMAN, E. S. SIMMS, and A. KORNBERG. 1958. Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J. Biol. Chem. 233:171–177.
Bi, H. L., J. Xu, L. He, Y. Zhang, K. Li, and Y. P. Huang. 2019. CRISPR/Cas9-mediated ebony knockout results in puparium melanism in Spodoptera litura. Insect Sci. 26:1011–1019.
Boch, J., and U. Bonas. 2010. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annu. Rev. Phytopathol. 48:419–436.
Boch, J., H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, and U. Bonas. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science (80-. ). 326:1509–1512.
Burkard, C., S. G. Lillico, E. Reid, B. Jackson, A. J. Mileham, T. Ait-Ali, C. B. A. Whitelaw, and A. L. Archibald. 2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 13:1–28.
Cermak, T., E. L. Doyle, M. Christian, L. Wang, Y. Zhang, C. Schmidt, J. A. Baller, N. V. Somia, A. J. Bogdanove, and D. F. Voytas. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39:1–11.
Cho, S. W., S. Kim, Y. Kim, J. Kweon, H. S. Kim, S. Bae, and J. S. Kim. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24:132–141.
Christian, M., T. Cermak, E. L. Doyle, C. Schmidt, F. Zhang, A. Hummel, A. J. Bogdanove, and D. F. Voytas. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186:756–761.
Crea, R., A. Kraszewski, and T. Hirose. 1978. Chemical synthesis of genes for human insulin (synthetic genes/oligonucleotide synthesis/phosphotriester method/high-performance liquid chromatography). 75:5765–5769.
Debnath, M., G. B. K. S. Prasad, and P. S. Bisen. 2005. Molecular diagnostics: Promises and possibilities. Mol. Diagnostics Promises Possibilities. 1–520.
Esvelt, K. M., A. L. Smidler, F. Catteruccia, and G. M. Church. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. Elife. 3:1–21.
Gasiunas, G., R. Barrangou, P. Horvath, and V. Siksnys. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109:2579–2586.
Gellert, M. 1967. Formation of covalent circles of lambda DNA by E. coli extracts. Proc. Natl. Acad. Sci. U. S. A. 57:148–155.
Groenen, M. A. M., A. L. Archibald, H. Uenishi, C. K. Tuggle, Y. Takeuchi, M. F. Rothschild, C. Rogel-Gaillard, C. Park, D. Milan, H. J. Megens, S. Li, D. M. Larkin, H. Kim, L. A. F. Frantz, M. Caccamo, H. Ahn, B. L. Aken, A. Anselmo, C. Anthon, L. Auvil, B. Badaoui, C. W. Beattie, C. Bendixen, D. Berman, F. Blecha, J. Blomberg, L. Bolund, M. Bosse, S. Botti, Z. Bujie, M. Bystrom, B. Capitanu, D. Carvalho-Silva, P. Chardon, C. Chen, R. Cheng, S. H. Choi, W. Chow, R. C. Clark, C. Clee, R. P. M. A. Crooijmans, H. D. Dawson, P. Dehais, F. De Sapio, B. Dibbits, N. Drou, Z. Q. Du, K. Eversole, J. Fadista, S. Fairley, T. Faraut, G. J. Faulkner, K. E. Fowler, M. Fredholm, E. Fritz, J. G. R. Gilbert, E. Giuffra, J. Gorodkin, D. K. Griffin, J. L. Harrow, A. Hayward, K. Howe, Z. L. Hu, S. J. Humphray, T. Hunt, H. Hornshoøj, J. T. Jeon, P. Jern, M. Jones, J. Jurka, H. Kanamori, R. Kapetanovic, J. Kim, J. H. Kim, K. W. Kim, T. H. Kim, G. Larson, K. Lee, K. T. Lee, R. Leggett, H. A. Lewin, Y. Li, W. Liu, J. E. Loveland, Y. Lu, J. K. Lunney, J. Ma, O. Madsen, K. Mann, L. Matthews, S. McLaren, T. Morozumi, M. P. Murtaugh, J. Narayan, D. T. Nguyen, P. Ni, S. J. Oh, S. Onteru, et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 491:393–398.
Gupta, D., O. Bhattacharjee, D. Mandal, M. K. Sen, D. Dey, A. Dasgupta, T. A. Kazi, R. Gupta, S. Sinharoy, K. Acharya, D. Chattopadhyay, V. Ravichandiran, S. Roy, and D. Ghosh. 2019. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci. 232:116636.
Gupta, S. K., S. Dixit, S. K. Dangi, G. Kaur, M. Mashooq, K. Karthik, M. Sarkar, S. Mahajan, and V. K. Nagaleekar. 2020. Marker-less deletion of cctA gene of Clostridium chauvoei. Anaerobe. 61:102116.
Ikeda, M., S. Matsuyama, S. Akagi, K. Ohkoshi, S. Nakamura, S. Minabe, K. Kimura, and M. Hosoe. 2017. Correction of a Disease Mutation using CRISPR/Cas9-assisted Genome Editing in Japanese Black Cattle. Sci. Rep. 7:1–9.
Ishino, Y., H. Shinagawa, K. Makino, M. Amemura, and A. Nakatura. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169:5429–5433.
Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (80-. ). 337:816–821.
Kim, Y. G., J. Cha, and S. Chandrasegaran. 1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U. S. A. 93:1156–1160.
Kim, Y. G., Y. Shi, J. M. Berg, and S. Chandrasegaran. 1997. Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene. 203:43–49.
Koslová, A., P. Trefil, J. Mucksová, M. Reinišová, J. Plachý, J. Kalina, D. Kučerová, J. Geryk, V. Krchlíková, B. Lejčková, and J. Hejnar. 2020. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc. Natl. Acad. Sci. U. S. A. 117:2108–2112.
Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. Fitzhugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. Levine, P. McEwan, K. McKernan, J. Meldrim, J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J. C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wilson, L. W. Hillier, J. D. McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. Chinwalla, K. H. Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. Miner, A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J. Minx, S. W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, et al. 2001. Initial sequencing and analysis of the human genome. Nature. 409:860–921.
LEHMAN, I. R., M. J. BESSMAN, E. S. SIMMS, and A. KORNBERG. 1958. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 233:163–170.
Li, T., S. Huang, W. Z. Jiang, D. Wright, M. H. Spalding, D. P. Weeks, and B. Yang. 2011. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 39:359–372.
Liu, Q., and V. Gerdts. 2019. Transmissible Gastroenteritis Virus of Pigs and Porcine Epidemic Diarrhea Virus. Ref. Modul. Life Sci.
Liu, X., Y. Wang, W. Guo, B. Chang, J. Liu, Z. Guo, F. Quan, and Y. Zhang. 2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat. Commun. 4:1–11.
Mahfouz, M. M., L. Li, M. Shamimuzzaman, A. Wibowo, X. Fang, and J. K. Zhu. 2011. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl. Acad. Sci. U. S. A. 108:2623–2628.
Mallikarjunappa, S., U. K. Shandilya, A. Sharma, K. Lamers, N. Bissonnette, N. A. Karrow, and K. G. Meade. 2020. Functional analysis of bovine interleukin-10 receptor alpha in response to Mycobacterium avium subsp. paratuberculosis lysate using CRISPR/Cas9. BMC Genet. 21:1–11.
Mertz, J. E., and R. W. Davis. 1972. Cleavage of DNA by R 1 restriction endonuclease generates cohesive ends. Proc. Natl. Acad. Sci. U. S. A. 69:3370–3374.
Meselson, M., and R. Yuan. 1968. DNA restriction enzyme from E. coli. Nature. 217:1110–1114.
Miller, J. C., S. Tan, G. Qiao, K. A. Barlow, J. Wang, D. F. Xia, X. Meng, D. E. Paschon, E. Leung, S. J. Hinkley, G. P. Dulay, K. L. Hua, I. Ankoudinova, G. J. Cost, F. D. Urnov, H. S. Zhang, M. C. Holmes, L. Zhang, P. D. Gregory, and E. J. Rebar. 2011. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29:143–150.
Miller, J., A. D. McLachlan, and A. Klug. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609–1614.
Moscou, M. J., and A. J. Bogdanove. 2009. Recognition by TAL Effectors. Science. 326:1501.
Murase, K., K. L. Morrison, P. Y. Tam, R. L. Stafford, F. Jurnak, and G. A. Weiss. 2003. EF-Tu Binding Peptides Identified, Dissected, and Affinity Optimized by Phage Display GDP conformation of EF-Tu. Because EF-Tu is abundant in the cell, other functions have been suggested, particu-larly during periods of cellular stress when protein syn-g. Chem. Biol. 10:161–168.
Petersen, B. 2017. Basics of genome editing technology and its application in livestock species. Reprod. Domest. Anim. 52:4–13.
SHIMOMURA, O., F. H. JOHNSON, and Y. SAIGA. 1962. Extraction, purification and properties of aequorin, a bioluminescent. J. Cell. Comp. Physiol. 59:223–239.
Smith, H. O., and K. W. Welcox. 1970. A Restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J. Mol. Biol. 51:379–391.
Snelling, W. M., R. Chiu, J. E. Schein, M. Hobbs, C. A. Abbey, D. L. Adelson, J. Aerts, G. L. Bennett, I. E. Bosdet, M. Boussaha, R. Brauning, A. R. Caetano, M. M. Costa, A. M. Crawford, B. P. Dalrymple, A. Eggen, A. Everts-van der Wind, S. Floriot, M. Gautier, C. A. Gill, R. D. Green, R. Holt, O. Jann, S. J. M. Jones, S. M. Kappes, J. W. Keele, P. J. de Jong, D. M. Larkin, H. A. Lewin, J. C. McEwan, S. McKay, M. A. Marra, C. A. Mathewson, L. K. Matukumalli, S. S. Moore, B. Murdoch, F. W. Nicholas, K. Osoegawa, A. Roy, H. Salih, L. Schibler, R. D. Schnabel, L. Silveri, L. C. Skow, T. P. L. Smith, T. S. Sonstegard, J. F. Taylor, R. Tellam, C. P. Van Tassell, J. L. Williams, J. E. Womack, N. H. Wye, G. Yang, and S. Zhao. 2007. A physical map of the bovine genome. Genome Biol. 8.
Tsetskhladze, Z. R., V. A. Canfield, K. C. Ang, S. M. Wentzel, K. P. Reid, A. S. Berg, S. L. Johnson, K. Kawakami, and K. C. Cheng. 2012. Functional Assessment of Human Coding Mutations Affecting Skin Pigmentation Using Zebrafish. 7.
Wagner, E. F., T. A. Stewart, and B. Mintz. 1981. The human β-globin gene and a functional viral thymidine kinase gene in developing mice. Proc. Natl. Acad. Sci. U. S. A. 78:5016–5020.
Watson, J. D., and S. Devons. 1968. The Double Helix: A Personal Account of the Discovery of the Structure of DNA. Phys. Today. 21:71–72.
Watters, K. E., H. Shivram, C. Fellmann, R. J. Lew, B. McMahon, and J. A. Doudna. 2020. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Proc. Natl. Acad. Sci. U. S. A. 117:6531–6539.
Whitworth, K. M., R. R. R. Rowland, V. Petrovan, M. Sheahan, A. G. Cino-Ozuna, Y. Fang, R. Hesse, A. Mileham, M. S. Samuel, K. D. Wells, and R. S. Prather. 2019. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res. 28:21–32.
Wu, H., Yong Zhang, Y. Wang, Yan Zhang, M. Yang, J. Lv, and J. Liu. 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 112:E1530–E1539.