Morphological Parameter of Nanotube TiO2 Thin Films via Anodization Method
Main Article Content
Abstract
In this research, TiO2 nanotubes were fabricated by anodization method using titanium thin films deposited onto ITO substrates by DC magnetron sputtering technique as the Ti source. Diameter and length of TiO2 nanotubes were controlled by parameters including ammonium fluoride (NH4F) at 0.4-1.4 wt%, water content at 1-4 wt% and power voltage at 20-50 V. The nanotube TiO2 films were established by scanning electron microscopy (SEM), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Fourier-Transformed Infrared spectrophotometry (FTIR) techniques. XRD pattern data exhibited anatase phase when TiO2 nanotube were annealed at 400 oC for 3 hrs. The XPS results revealed complement of Ti, O, F, Sn, In and C. The FT-IR spectrum exhibited the characteristic bands of the TiO2 ,indicating Ti-O stretching mode. On the SEM images, average diameter and length of TiO2 nanotubes depend on ammonium fluoride, water content and on power voltage, with optimal condition of TiO2 nanotubes being at 0.8 wt% ammonium fluoride, 1 wt% water and power voltage at 30 V. TiO2 nanotubes with diameter 38 nm and length 763 nm could be used as dye sensitized solar cell.
Article Details
The content and information in the article published in Journal of Rajamangala University of Technology Srivijaya It is the opinion and responsibility of the author of the article. The editorial journals do not need to agree. Or share any responsibility.
References
Aiempanakit, K., Jessadaluk, S., Tongmaha, S., Supati, A., Khemasiri, N., Pornthreeraphat, S., Horprathum, M., Patthanasetakul, V. and Eiamchai, P. 2016. Vertical Alignment TiO2 Nanotube Based on Ti Film Prepared via Anodization Technique. Key Engineering Materials 675: 167-170.
Aiempanakit, M., Tabtimsri, T., Triamnak, N. and Suwanchawalit, C. 2019. Curcumin modified Titanium Dioxide Nanotubes with Enhanced Visible Light Photocatalytic Performance. International Journal of Electrochemical Science 14: 1954-1967.
Barreca, D., Garon, S., Tondello, E. and Zanella, P. 2000. SnO2 Nanocrystalline Thin Films by XPS. Surface Science Spectra 7: 81-85.
Bozkurt Cırak, B., Karadeniz, S.M., Kılınc, T., Caglar, B., Ekinci, A.E., Yelgin, H., Kurekci, M. and Cırak, C. 2017. Synthesis, surface properties, crystal structure and dye sensitized solar cell performance of TiO2 nanotube arrays anodized under different voltages. Vacuum 144: 183-189.
Chen, H., Chen, S., Quan, X. and Zhang, Y. 2010. Structuring a TiO2-Based Photonic Crystal Photocatalyst with Schottky Junction for Efficient Photocatalysis. Environmental Science & Technology 44: 451-455.
El-Sherbiny, S., Morsy, F., Samir, M. and Fouad, O.A. 2014. Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment. Applied nanoscience 4: 305-313.
Ge, M.Z., Cao, C.Y., Huang, J.Y., Li, S.H., Zhang, S.N., Deng, S., Li, Q.S., Zhang, K.Q. and Lai, Y.K. 2016. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnology Reviews 5: 75-112.
Gonzalez-Torres, M., Olayo, M.G., Cruz, G.J., Gomez, L.M., Sanchez-Mendieta, V. and Gonzalez-Salgado, F. 2014. XPS Study of the Chemical Structure of Plasma Biocopolymers of Pyrrole and Ethylene Glycol. Advances in Chemistry 22: 1-8.
Haring, A., Morris, A. and Hu, M. 2012. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications. Materials 55: 1890-1909.
Hossain, M.A., Oh, S. and Lim, S. 2017. Fabrication of dye-sensitized solar cells using a both-ends-opened TiO2 nanotube/nanoparticle hetero-nanostructure. Journal of Industrial and Engineering Chemistry 51: 122-128.
Kim, T.H., Lee, J.W., Kim, B.S., Cha, H. and Nah, Y.C. 2014. Morphological investigation of anodized TiO2 nanotubes fabricated using different voltage conditions. Microporous and Mesoporous Materials 196: 41-45.
Kim, J.T., Lee, S.H. and Han, Y.S. 2015. Enhanced power conversion efficiency of dye-sensitized solar cells with Li2SiO3-modified photoelectrode. Applied Surface Science 333: 134-140.
Larsson, P.O., Andersson, A., Wallenberg, L.R. and Svensson, B. 1996. Combustion of CO and Toluene; Characterisation of Copper Oxide Supported on Titania and Activity Comparisons with Supported Cobalt, Iron, and Manganese Oxide. Journal of Catalysis 163: 279-293.
Limcharoen, A., Pakpum, C. and Limsuwan, P. 2012. An X-ray Photoelectron Spectroscopy Investigation of Redeposition from Fluorine-based Plasma Etch on Magnetic Recording Slider Head Substrate. Procedia Engineering 32: 1043-1049.
Macak, J.M., Tsuchiya, H., Ghicov, A. and Schmuki, P. 2005. Dye-sensitized anodic TiO2 nanotubes. Electrochemistry Communications 7: 1133-1137.
Mohammadpour, F. and Moradi, M. 2015. Double-layer TiO2 nanotube arrays by two-step anodization: Used in back and front-side illuminated dye-sensitized solar cells. Materials Science in Semiconductor Processing 39: 255-264.
Praveen, P., Viruthagiri, G., Mugundan, S. and Shanmugam, N. 2013. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles-Synthesized via sol-gel route. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 117: 622-629.
Rho, W.Y., Jeon, H., Kim, H.S., Chung, W.J., Suh, J.S. and Jun, B.H. 2015. Recent Progress in Dye-Sensitized Solar Cells for Improving Efficiency: TiO2Nanotube Arrays in Active Layer. Journal of Nanomaterials 20: 1-17.
Roy, P., Kim, D., Lee, K., Spiecker, E. and Schmuki, P. 2010. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2: 45-59.
Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K. and Grimes, C.A. 2007. Highly-ordered TiO2nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18: 65707-65716.
So, S., Kriesch, A., Peschel, U. and Schmuki, P. 2015. Conical-shaped titania nanotubes for optimized light management in DSSCs reach back-side illumination efficiencies > 8%. Journal of Materials Chemistry A 3: 12603-12608.
Sultana, T., Georgiev, G.L., Auner, G., Newaz, G., Herfurth, H.J. and Patwa, R. 2008. XPS analysis of laser transmission micro-joint between poly (vinylidene fluoride) and titanium. Applied Surface Science 255: 2569-2573.
Wang, J., Qu, S., Zhong, Z., Wang, S., Liu, K. and Hu, A. 2014. Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye-sensitized solar cells. Progress in Natural Science: Materials International 24: 588-592.
Wang, Z., Long, P., Feng, Y., Qin, C. and Feng, W. 2017. Surface passivation of carbon dots with ethylene glycol and their high-sensitivity to Fe3+. RSC Advances 7: 2810-2816.
Wei, W., Berger, S., Hauser, C., Meyer, K., Yang, M. and Schmuki, P. 2010. Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochemistry Communications 12: 1184-1186.
Yamamoto, S., Bluhm, H., Andersson, K., Ketteler, G., Ogasawara, H., Salmeron, M. and Nilsson, A. 2008. In situx-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. Journal of Physics: Condensed Matter 20: 1-14.
Yin, H., Liu, H. and Shen, W.Z. 2010. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 21: 35601-35607.
Yu, X., Wang, H., Liu, Y., Zhou, X., Li, B., Xin, L., Zhou, Y. and Shen, H. 2013. One-step ammonia hydrothermal synthesis of single crystal anatase TiO2 nanowires for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A 1: 2110-2117.
Zhu, K., Neale, N.R., Miedaner, A. and Frank, A.J. 2007. Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Letters 7: 69-74.