Synthesis, Characterization, Theoretical Calculation-Based Density Functional Theory and In vitro Cytotoxicity Against Breast Cancer Cell Lines of Ru(p-cymene)(PPh3)Cl2 Complex
Keywords:
ruthenium(II) complex, triphenylphosphine, density functional theory, anticancerAbstract
Ruthenium complexes are known as promising crucial substances for in vitro antitumor and anticancer. In this study, Ru(p-cymene)(PPh3)Cl2 was synthesized through a consequence reaction between dichloro(p-cymene)ruthenium(II) dimer and triphenylphosphine (PPh3) ligand in dichloromethane to investigate its in vitro activity against breast cancer cells comparison with free PPh3 ligand. The complex was characterized using single crystal X-ray diffraction, 1H-NMR, FTIR, elemental to analyze its specific structure which adopted a distorted pseudo-tetrahedral geometry. Theoretical calculations under density functional theory were conducted identify that the absorption band at 393 nm with a shoulder of 496 nm arose from the characters of charge transfer transitions. The Ru(p-cymene)(PPh3)Cl2 complex was measured for cytotoxicity against three breast cancer cell lines, HCC1937, MCF-7, and MDA-MB-231 by MTT assay. It exhibited higher anti-breast cancer activity against MCF-7, with an IC50 value of 15.99 µM, compared to cisplatin, a commercial drug (42.2 µM), by 2.6 folds.
References
Allardyce, C.S. and Dyson, P.J. 2001. Ruthenium in medicine: current clinical uses and future prospects. Platinum Metals Reviews 45: 62.
Bergamo, A. and Sava, G. 2011. Ruthenium anticancer compounds: Myths and realities of the emerging metal-based drugs. Dalton Transactions 40(31): 7817-7823.
Biancalana, L., Zacchini, S., Ferri, N., Lupo, M.G., Pampaloni, G. and Marchetti, F. 2017. Tuning the cytotoxicity of ruthenium(II) para-cymene complexes by mono-substitution at a triphenylphosphine /phenoxydiphenylphosphine ligand. Dalton Transactions 46(47): 16589-16604.
Brissos, R.F., Clavero, P., Gallen, A., Grabulosa, A., Barrios, L.A., Caballero, A.B., Korrodi-Gregório, L., Pérez-Tomás, R., Muller, G., Soto-Cerrato, V. and Gamez, P. 2018. Highly Cytotoxic Ruthenium(II)-Arene Complexes from Bulky 1-Pyrenylphosphane Ligands. Inorganic Chemistry 57(23): 14786-14797.
Chuklin, P., Chalermpanaphan, V., Nhukeaw, T., Saithong, S., Chainok, K., Phongpaichit, S., Ratanaphan, A. and Leesakul, N. 2017. Synthesis, X-ray structure of organometallic ruthenium(II) p-cymene complexes based on P- and N- donor ligands and their in vitro antibacterial and anticancer studies. Journal of Organometallic Chemistry 846: 242-250.
Dkhar, L., Banothu, V., Kaminsky, W. and Kollipara, M.R. 2020. Synthesis of half sandwich platinum group metal complexes containing pyridyl benzothiazole hydrazones: Study of bonding modes and antimicrobial activity. Journal of Organometallic Chemistry 914: 121225.
Elsegood, M.R.J., Smith, M.B. and Sanchez-Ballester, N.M. 2006. Dichloro (η6-p-cymene)(triphenylphosphine) -ruthenium (II). Acta Crystallographica Section E: Structure Reports Online 62(11): 2838-2840.
Farrugia, L.J. 2012. WinGX and ORTEP for Windows: An update. Journal of Applied Crystallography 45(4): 849-854.
Govindaswamy, P., Mozharivskyj, Y.A. and Kollipara, M.R. 2004. New neutral and cationic η6-arene ruthenium complexes with phosphine and amine ligands: Syntheses and molecular structures of [(η6-p-cymene) Ru (NH2CH2C6)H5)Cl2], [(η6-C6Me6)Ru(PPh2Py)Cl2] and [(η6-C6Me6)Ru(PPh2Py)Cl]+. Polyhedron 23(18): 3115-3123.
Herry, B., Batchelor, L.K., Roufosse, B., Romano, D., Baumgartner, J., Borzova, M., Reifenstahl, T., Collins, T., Benamrane, A., Weggelaar, J., Correia, M.C., Dyson, P.J. and Blom, B. 2019. Heterobimetallic Ru(μ-dppm)Fe and homobimetallic Ru(μ-dppm)Ru complexes as potential anti-cancer agents. Journal of Organometallic Chemistry 901: 120934.
Honorato, J., Oliveira, K.M., Leite, C.M., Colina-Vegas, L., Nóbrega, J.A., Castellano, E.E., Ellena, J., Correa, R.S. and Batista, A.A. 2020. “Half-Sandwich”/RuII Anticancer Complexes Containing Triphenylphosphine and p-Substituted Benzoic Acids. Journal of the Brazilian Chemical Society 31: 2237-2249.
Klaimanee, E., Nhukeaw, T., Saithong, S., Ratanaphan, A., Phongpaichit, S., Tantirungrotechai, Y. and Leesakul, N. 2021. Half-sandwich ruthenium(II) p-cymene complexes based on organophosphorus ligands: Structure determination, computational investigation, in vitro antiproliferative effect in breast cancer cells and antimicrobial activity. Polyhedron 204: 115244.
Lapasam, A., Dkhar, L., Joshi, N., Poluri, K.M. and Kollipara, M.R. 2019. Antimicrobial selectivity of ruthenium, rhodium, and iridium half sandwich complexes containing phenyl hydrazone Schiff base ligands towards B. thuringiensis and P. aeruginosa bacteria. Inorganica Chimica Acta 484: 255-263.
Li, J., Tian, M., Tian, Z., Zhang, S., Yan, C., Shao, C. and Liu, Z. 2018. Half-sandwich iridium(III) and ruthenium(II) complexes containing P^P-chelating ligands: A new class of potent anticancer agents with unusual redox features. Inorganic Chemistry 57(4): 1705-1716.
Ludwig, G., Kaluđerović, G.N., Bette, M., Block, M., Paschke, R. and Steinborn, D. 2012. Highly active neutral ruthenium(II) arene complexes: Synthesis, characterization, and investigation of their anticancer properties. Journal of Inorganic Biochemistry 113: 77-82.
Mawnai, I.L., Adhikari, S., Dkhar, L., Tyagi, J.L., Poluri, K.M. and Kollipara, M.R. 2019. Synthesis and antimicrobial studies of half-sandwich arene platinum group complexes containing pyridylpyrazolyl ligands. Journal of Coordination Chemistry 72(2): 294-308.
MacRae, C.F., Sovago, I., Cottrell, S.J., Galek, P.T.A., McCabe, P., Pidcock, E., Platings, M., Shields, G.P., Stevens, J.S., Towler, M. and Wood, P.A. 2020. Mercury 4.0: From visualization to analysis, design and prediction. Journal of Applied Crystallography 53: 226-235.
Mennucci, B., Cancès, E. and Tomasi, J. 1997. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications. Journal of Physical Chemistry B 101(49): 10506-10517.
Murray, B.S., Babak, M.V., Hartinger, C.G. and Dyson, P.J. 2016. The development of RAPTA compounds for the treatment of tumors. Coordination Chemistry Reviews 306: 86-114.
Neethu, K.S., Eswaran, J., Theetharappan, M., Nattamai S.P.B., Neelakantan, M.A. and Velusamy, K.M. 2019. Organoruthenium(II) complexes featuring pyrazole-linked Schiff base ligands: Crystal structure, DNA/BSA interactions, cytotoxicity and molecular docking. Applied Organometallic Chemistry 33(3): 1-16.
Orhan, E., Dülger, G., Alpay, M., Öksüz, N. and Dülger, B. 2022. Synthesis, antimicrobial and antiproliferative activities of new self-assembly benzimidazole-bridged aren ruthenium rectangles in human breast cancer cells. Journal of Inclusion Phenomena and Macrocyclic Chemistry 102(1-2): 45-54.
Pettinari, R., Pettinari, C., Marchetti, F., Skelton, B.W., White, A.H., Bonfili, L. and Eleuteri, A.M. 2014. Arene-ruthenium (II) acylpyrazolonato complexes: apoptosis-promoting effects on human cancer cells. Journal of medicinal chemistry 57(11): 4532-4542.
Rohini, G., Haribabu, J., Aneesrahman, K.N., Bhuvanesh, N.S.P., Ramaiah, K., Karvembu, R. and Sreekanth, A. 2018. Half-sandwich Ru(II) (η6-p-cymene) complexes bearing N-dibenzosuberenyl appended thiourea for catalytic transfer hydrogenation and in vitro anticancer activity. Polyhedron 152: 147-154.
Rojas, S., Carmona, F.J., Barea, E. and Maldonado, C.R. 2017. Inorganic mesoporous silicas as vehicles of two novel anthracene-based ruthenium metalloarenes. Journal of Inorganic Biochemistry 166: 87-93.
Roy, L.E., Hay, P.J. and Martin, R.L. 2008. Revised basis sets for the LANL effective core potentials. Journal of Chemical Theory and Computation 4(7): 1029-1031.
Sáez, R., Lorenzo, J., Prieto, M.J., Font-Bardia, M., Calvet, T., Omeñaca, N., Vilaseca, M. and Moreno, V. 2014. Influence of PPh3 moiety in the anticancer activity of new organometallic ruthenium complexes. Journal of Inorganic Biochemistry 136: 1-12.
Sheldrick, G.M. 2015. Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry 71: 3-8.
Spackman, P.R., Turner, M.J., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Jayatilaka, D., and Spackman, M.A. 2021. CrystalExplorer: A program for Hirshfeld surface analysis, visualization, and quantitative analysis of molecular crystals. Journal of Applied Crystallography 54(3): 1006-1011.
Subarkhan, M.K.M. and Ramesh, R. 2016. Ruthenium(II) arene complexes containing benzhydrazone ligands: Synthesis, structure and antiproliferative activity. Inorganic Chemistry Frontiers 3(10): 1245-1255.
Tabares, J.P.G., Santos, R.L.S.R., Cassiano, J.L., Zaim, M.H., Honorato, J., Batista, A.A., Teixeira, S.F., Ferreira, A.K., Viana, R.B., Martínez, S.Q., Stábile, A.C. and de Oliveira Silva, D. 2019. A Ru(II)-p-cymene compound bearing naproxen-pyridineamide.
Synthesis, spectroscopic studies, computational analysis and in vitro anticancer activity against lung cells compared to Ru(II)-p-cymene-naproxen and the corresponding drug ligands. Inorganica Chimica Acta 489: 27-38.
Yellol, J., Pérez, S.A., Buceta, A., Yellol, G., Donaire, A., Szumlas, P., Bednarski, P.J., Makhloufi, G., Janiak, C., Espinosa, A. and Ruiz, J. 2015. Novel C,N-Cyclometalated Benzimidazole Ruthenium(II) and Iridium(III) Complexes as Antitumor and Antiangiogenic Agents: A Structure-Activity Relationship Study. Journal of Medicinal Chemistry 58(18): 7310-7327.
Zeng, L., Gupta, P., Chen, Y., Wang, E., Ji, L., Chao, H. and Chen, Z.S. 2017. The development of anticancer ruthenium(II) complexes: From single molecule compounds to nanomaterials. Chemical Society Reviews 46(19): 5771-5804.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rajamangala University of Technology Srivijaya Research Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The content and information in the article published in Journal of Rajamangala University of Technology Srivijaya It is the opinion and responsibility of the author of the article. The editorial journals do not need to agree. Or share any responsibility.