Investigation of Surface Sterilization Procedure for Japanese Mini Rose Hohoemi (Rosa ‘Hohoemi Rouge’)

Authors

  • Thiwthong Thongpraphai Department of Agroforestry, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand.
  • Rodjanacorn Chuengpanya Independent academician in plant tissue culture, 103/1 moo 3, Sara, Kho Kha, Lampang, 52130, Thailand. https://orcid.org/0000-0002-2894-632X
  • Apiradee Siangsuepchart Department of Agro-Industrial Biotechnology, Maejo University Phrae Campu

Keywords:

Japanese Mini Rose Hohoemi, economic plant, surface sterilization

Abstract

Japanese Mini Rose Hohoemi or Hohoemi rose (Rosa ‘Hohoemi Rouge’) is a rose cultivar that produces blooms throughout the year. This plant is widely used ornamentally because it produces a large number of flowers per branch and its exceptional resistance to plant diseases. It is essential to adjust the number of plants in order to consistently satisfy the ornamental plant market’s requirements. For this reason, tissue culture can help achieve this objective. However, no tissue culture report on Hohoemi rose has  been found. Therefore, investigating a suitable surface sterilization method for achieving large numbers of in vitro axenic plantlets is crucial. In this current study, young branches of Hohoemi rose were subjected to four distinct procedures for surface sterilization using Hiter® or Osil® solutions. After that, nodes were subsequently excised and cultured onto Murashige and Skoog (1962) medium. The contamination-free rate of the explants and the survival rate of the sterilized explants were recorded after 4 and 8 weeks of culture, respectively. The results revealed that surface sterilization with 10% (v/v) of Osil® for 10 min of exposure time was the appropriate disinfection method. High rates of contamination-free (90%) and survival (100%) were achieved with this treatment. The results of this study will be helpful in producing large numbers of axenic cultures in vitro following the surface sterilization process, which will facilitate future research and the development of a successful tissue culture technique for Hohoemi rose.

References

Abdolmohammadi, M., Kermani, M.J., Zakizadeh, H. and Hamidoghli, Y. 2014. In vitro embryo germination and interploidy hybridization of rose (Rosa sp.). Euphytica 198: 255-264.

Abuj, B.B., Kshirsagar, A.B. and Zahid, I.H. 2015. Effect of different concentration of BA and NAA on nodal culture of Rosa hybrida L. Bionano Frontier 8(1): 14-17.

Adebomojo, A.A. and Abdul-Rahaman, A.A. 2020. Surface sterilization of Ocimum seeds and tissues with biosynthesized nanosilver and its effects on callus induction. IOP Conference Series: Materials Science and Engineering 805: 012024.

Attia, A.O., Dessoky, E.D.S. and El-Tarras, A.E. 2012. In vitro propagation of Rosa hybrida L. cv. Al-Taif Rose plant. African Journal of Biotechnology 11(48): 10888-10893.

Bala, M., Singh, K.P. and Prasad, K.V. 2010. Standardization of in vitro mass multiplication protocol for hybrid tea rose cv. Pusa Mohit. Indian Journal of Horticulture 67(2): 225-229.

Bala, M., Singh, K.P., Singh, S.K. and Prasad, K.V. 2013. Standardization of an efficient protocol for in vitro mass multiplication of hybrid tea rose cv. Raktima. Indian Journal of Horticulture 70(3): 404-410.

Bayanati, M., Davoodi, D. and Kermani, M.J. 2015. Effect of agar and different culture media on the micropropagation of Rosa hybrida cv. ‘Black Baccara’. Journal of Ornamental Plants 5(2): 75-81.

Bhadane, B.S. and Patil, R.H. 2016. Data on the cost effective surface sterilization method for C. carandas (L.) seeds and callus induction from aseptic seedling. Data in Brief 7: 1551-1555.

Bhojwani, S.S. and Dantu, P.K. 2013. Plant tissue culture: an introductory text. Springer, New Delhi.

da Silva de Matos, A.V.C., de Oliveira, B.S., de Oliveira, M.E.B.B. and Cardoso, J.C. 2021. AgNO3 improved micropropagation and stimulate in vitro flowering of rose (Rosa x hybrida) cv. Sena. Ornamental Horticulture 27(1): 33-40.

Dehestani-Ardakani, M., Shariatpanahi, M.E. and Kafi, M. 2016. Investigation of the effects of temperature and starvation stresses on microspore embryogenesis in two tetraploid roses (Rosa hybrida L.). Scientia Agriculture 14(2): 220-227.

Estrela, C., Estrela, C.R., Barbin, E.L., Spanó, J.C.E., Marchesan, M.A. and Pécora, J.D. 2002. Mechanism of action of sodium hypochlorite. Brazilian Dental Journal 13: 113-117.

Fukuzaki, S. 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Science 11(4): 147-157.

Hongthongkham, J., Phanet, N. and Singhamat, J. 2022. In vitro propagation of Plumbago zeylanica L. Udon Thani Rajabhat University Journal of Science and Technology 10(2): 43-56. (in Thai)

Hsia, C.N. and Korban, S.S. 1996. Factors affecting in vitro establishment and shoot proliferation of Rosa hybrida L. and Rosa chinensis minima. In Vitro Cellular and Developmental Biology – Plant 32: 217-222.

Ibrahim, R. and Debergh, P.C. 2000. Improvement of adventitious bud formation and plantlet regeneration from in vitro leaflet explants of roses (Rosa hybrida L.). Acta Horticulturae 520: 271-279.

Ibrahim, R. and Debergh, P.C. 2001. Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Scientia Horticulturae 88(1): 41-57.

Jaisue, C., Thitithanakul, S., Onsanit, S. and Sontikun, S. 2019. Explants sterilization techniques of Nepenthes spp. for tissue culture. Khon Kaen Agriculture Journal 47: 1515-1520. (in Thai)

Jonoubi, P., Aminsalehi, M., Razavi, K. and Zeinipour, M. 2019. Propagation of Rosa hybrida L. cv. Cool Water under tissue culture and transformation of the RhAA gene via Agrobacterium tumefaciens. Journal of Genetic Resources 5(1): 38-44.

Kanchanapoom, K., Posayapisit, N. and Kanchanapoom, K. 2009. In vitro flowering from cultured nodal explants of rose (Rosa hybrida L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(2): 261-263.

Kanchanapoom, K., Sakpeth, P. and Kanchanapoom, K. 2010. In vitro flowering of shoots regenerated from cultured nodal explants of Rosa hybrida cv. ‘Heirloom’. Science Asia 36: 161-164.

Khosh-Khui, M. and Sink, K.C. 1982a. Rooting-enhancement of Rosa hybrida for tissue culture propagation. Scientia Horticulturae 17(4): 371-376.

Khosh-Khui, M. and Sink, K.C. 1982b. Micropropagation of new and old world rose species. Journal of Horticultural Science 57(3): 315-319.

Leva, A. and Rinaldi, L.M.R. 2012. Recent advances in plant in vitro culture. InTechOpen, Rijeka.

Mahmoud, I.M.A. and Hassanein, A.M.A. 2018. Essential factors for in vitro regeneration of rose and a protocol for plant regeneration from leaves. Horticultural Science 45(2): 83-91.

Maurya, R.P., Yadav, R.C., Godara, N.R. and Beniwal, V.S. 2013. In vitro plant regeneration of rose (Rosa hybrida L.) cv. "Benjamin Paul" through various explants. Journal of Experimental Biology and Agricultural Sciences 1: 111-119.

Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-497.

Namita, N., Raju, D.V.S., Prasad, K.V., Singh, K.P. and Kumar, S. 2015. Standardization of protocol for in vitro multiplication of rose (Rosa× hybrida) cv. Happiness. The Indian Journal of Agricultural Sciences 85(11): 1513-1517.

Nartop, P. 2019. Silver nanoparticles: ecofriendly surface sterilization of plant seeds in different shapes and sizes. Journal of Animal and Plant Sciences 29(2): 453-460.

Ozel, C.A. and Arslan, O. 2006. Efficient micropropagation of English shrub rose “Heritage” under in vitro conditions. International Journal of Agriculture and Biology 5: 626-629.

Pahnekolayi, M.D., Tehranifar, A., Samiei, L. and Shoor, M. 2019. Optimizing culture medium ingredients and micrografting devices can promote in vitro micrografting of cut roses on different rootstocks. Plant Cell, Tissue and Organ Culture 137: 265-274.

Parzymies, M. 2021. Nano-silver particles reduce contaminations in tissue culture but decrease regeneration rate and slows down growth and development of Aldrovanda vesiculosa explants. Applied Sciences 11(8): 3653.

Pati, P.K., Rath, S.P., Sharma, M., Sood, A. and Ahuja, P.S. 2006. In vitro propagation of rose - a review. Biotechnology Advances 24(1): 94-114.

Sarmast, M., Salehi, H. and Khosh-Khui, M. 2011. Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. Glauca explants. Acta Biologica Hungarica 62(4): 477-484.

Schnürer, J., Clarholm, M., Boström, S. and Rosswall, T. 1986. Effects of moisture on soil microorganisms and nematodes: a field experiment. Microbial Ecology, 12: 217-230.

Shokri, S., Babaei, A., Ahmadian, M., Arab, M.M. and Hessami, S. 2015. The effects of different concentrations of nano-silver on elimination of bacterial contaminations and phenolic exudation of rose (Rosa hybrida L.) in vitro culture. Acta Horticulturae 1083: 391-396.

Srisawang, A., Laohavisuti, N. and Ruangdej, U. 2019. The optimum sterilization procedures on micropropagation of Anubias sp. ‘White’. King Mongkut's Agricultural Journal 37(4): 648-654. (in Thai)

Tibkwang, A., Junkasiraporn, S. and Chotikadachanarong, K. 2018. Effects of cytokinnin and sucrose on tissue culture of Rosa chinensis Jacq.var. minima Voss. Burapha Science Journal 23(2): 712-721. (in Thai)

Tolembetova, A.K., Turasheva, S.K., Imanbaeva, A.A., Ernazarova, G.I. and Serikova, Z.B. 2017. Microclonal propagation in vitro of commercial varieties of rose. Experimental Biology 4(73): 32-41.

Tung, H.T., Thuong, T.T., Cuong, D.M., Luan, V.Q., Hien, V.T., Hieu, T., Nam, N.B., Phuong, H.T.N, Vinh, B.V.T., Khai, H.D., Nhut, D.T. and Nhut, D. T. 2021a. Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa). Plant Cell, Tissue and Organ Culture 145: 393-403.

Tung, H.T., Van, H.T., Bao, H.G., Bien, L.T., Khai, H.D., Luan, V.Q., Cuong, D.M., Phong, T.H. and Nhut, D.T. 2021b. Silver nanoparticles enhanced efficiency of explant surface disinfection and somatic embryogenesis in Begonia tuberous via thin cell layer culture. Vietnam Journal of Biotechnology 19(2): 337-347.

United States Plant Patent. 2020. Patent No.: US PP31,646 P3. Available Source: https://www. freepatentsonline.com/PP31646.html, February 20, 2024.

Vatcharakajon, P., Sornsaket, A., Choengpanya, K., Susawaengsup, C., Sornsakdanuphap, J., Boonplod, N., Bhuyar, P. and Dangtungee, R. 2023. Silver nanochito oligomer hybrid solution for the treatment of Citrus greening disease (CGD) and biostimulants in Citrus. Horticulture 9(6): 725.

Yadav, H., Banyal, N., Singh, M.K., Singh, K.P., Panwar, S., Singh, B., Kumar, S. and Mandal, B.N. 2023. Optimization of in-vitro protocol for rapid mass multiplication of floribunda rose cv. 'Rose Sherbet'. Agricultural Mechanization in Asia, Africa and Latin America 54(9): 15781-15788.

Yin, I.X., Zhang, J., Zhao, I.S., Mei, M.L., Li, Q. and Chu, C.H. 2020. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine 15: 2555-2562.

Characteristics of Rosa ‘Hohoemi Rouge’ (A), selected young branches (B) and pruned young branches, 3 – 5 cm in length, as starting material for surface sterilizing process (C).

Published

2025-08-28

How to Cite

Thongpraphai, T. ., Chuengpanya, R. ., & Siangsuepchart, A. . (2025). Investigation of Surface Sterilization Procedure for Japanese Mini Rose Hohoemi (Rosa ‘Hohoemi Rouge’). Recent Science and Technology, 17(3), 263449. retrieved from https://li01.tci-thaijo.org/index.php/rmutsvrj/article/view/263449