Diurnal Leaf Net CO 2 Assimilation, Acid Content and Photochemistry of Pineapple (Ananas comosus L. Merr.) ‘Smooth Cayenne’


  • Pannee Chuennakorn Center for Agricultural Biotechnology
  • Suntaree Yingjajaval Center for Agricultural Biotechnology, Kasetsart University




net CO2 assimilation, stomatal conductance, photochemistry, acid decarboxylation rate


Pineapple as a crassulacean acid metabolism (CAM)plant was reported to display full 4 carboxylation phases. To elucidate this process, we carried out 24 h monitoring of photosynthesis of pineapple ‘Smooth Cayenne’ in open field in all 3 seasons in Prachuap Khiri Khan Province. We measured leaf gas exchange, total acid content (H+), and photochemistry of PSII (chlorophyll fluorescence). The gas exchange data obtained, confirmed the presence of the 4 carboxylation phases. Phase I occurred during dark period, net CO2 assimilation rate (A) increased in consistent with increase of stomatal conductance (gs), having the maximal A in the low range of 2–2.6 μmolCO2 m–2 s –1, accompanied by the increase in H+ . The increment in A and H+ continued into Phase II during early morning which lasted about 2 h when radiation (PPF) was still low. In Phase II, photochemistry commenced showing an increase in electron transport rate (ETR), whereas H+ reached its maximum. Subsequent stronger PPF initiated Phase III, when A turned negative as the reducing gs limiting external CO2 intake. On the other hand, ETR continued to increase to its maximum, enabling the decarboxylation of the accumulated acid. The average acid decarboxylation rate (ADR), from the CO2 carboxylation process was 6.7–7.8 µmolCO2 m–2 s –1. Phase III which lasted 6-8 h ended in late afternoon, as H+ was mostly spent and ADR dropped closed to zero. In pineapple, Phase IV clearly appeared when gs increased (stomata reopening) and positive A was detected.


Download data is not yet available.


พรชัย ไพบูลย์ และสุนทรี ยิ่งชัชวาลย์. 2563. การสร้างฐานข้อมูลการสังเคราะห์แสงของพืชเศรษฐกิจเพื่อนำมาใช้ประโยชน์ในการผลิตพืชที่มีประสิทธิภาพ. หน้า 3-5. ใน: รายงานโครงการวิจัย. ศูนย์เทคโนโลยีชีวภาพเกษตร มหาวิทยาลัยเกษตรศาสตร์.

พรรณี ชื่นนคร และสุนทรี ยิ่งชัชวาลย์. 2553. อัตราแลกเปลี่ยนแก๊สในรอบวันของใบกล้วยไม้สกุลหวาย พันธุ์บอม โจ. ว. วิทย. กษ. 41 (2): 231–240.

ศรีสังวาลย์ ลายวิเศษกุล และสุนทรี ยิ่งชัชวาลย์. 2554ก. เส้นตอบสนองต่อแสงของใบผักโขมภายใต้ความเข้มข้นหลายระดับของคาร์บอนไดออกไซด์. ว. วิทย. กษ. 42 (2): 193–202.

ศรีสังวาลย์ ลายวิเศษกุล และสุนทรี ยิ่งชัชวาลย์. 2560. ศักยภาพการสังเคราะห์แสงของใบธงของข้าวพันธุ์กข41, ปทุมธานี1 และขาวดอกมะลิ105 ภายใต้การเพิ่มขึ้นของ CO2. ว. วิทย. กษ. 48 (1): 36–47.

Black, C.C. and C.B. Osmond. 2003. Crassulacean acid metabolism photosynthesis: working the night shift. Photosynth Res. 76 (1–3): 329–341.

Chen, L.S., Q. Lin and A. Nose. 2002. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoëëdaigremontiana and K. pinnata. J. Exp. Bot.53(367):341–350.

Cote,F.X., M. Andre., M.Folliot., D. Massimino and A. Daguenet. 1989. CO2 and O2 exchanges in the CAM plant Ananas comosus (L.) Merr. Determination of total and malate–decarboxylation–dependent CO2 assimilation rates: study of light O2 uptake. Plant Physiol. 89 (1): 61–68.

Cushman, J.C. 2001. A Plastic Photosynthetic Adaptationto Arid Environments. Plant Physiol. 127 (4): 1439-1448.

De Mattos, E. A., Grams T. E. E., E. Ball, A.C. Franco, A. Haag–Kerwer, B. Herzog, F. R. Scarano and U. Lüttge. 1997.

Diurnal patterns of chlorophyll a fluorescence and stomatal conductance in species of two types of coastal tree vegetation in southeastern Brazil. Trees. 11: 363–369.

Dodd, A. N., A. M. Borland, R. P. Haslam, H. Griffiths and K. Maxwell. 2002. Crassulacean acid metabolism: plastic, fantastic. J. Exp. Bot. 53: 569–580.

Franco, A. C., B. Herzog, C. Hübner, E. A. De Mattos, F. R. Scarano, E. Ball, U. Lüttge. 1999. Diurnal changes in chlorophyll a fluorescence, CO2–exchange and organic acid decarboxylation in the tropical CAM tree Clusia hilariana. Tree Physiol. 19: 635–644.

Farquhar, G.D., S. von Caemmerer and J.A.Berry. 1980. A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 149 (1): 78–90.

Genty, B.,J.M. Briantaisand N.R. Baker. 1989.Therelationshipbetweenthequantum

yield of photosynthetic electron transportandquenchingofchlorophyll fluorescence. Biochim. Biophys. Acta - Gen. Subj. 990 (1): 87–92.

Griffiths, H., W. E. Robe, J. Girnus and K. Maxwell. 2008. Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchoe species. J Exp Bot. 59 (7): 1851–1861.

LI–COR. 2011. Instruction Manual for Using the LI-6400/LI-6400XT Portable Photosynthesis System, OPEN Software Version 6.2. LI–COR Biosciences Inc., Nebraska. 1324 p.

Lüttge, U. 1989. Carbondioxide Concentrating Mechanisms and Evolution of CAM in Vascular Epiphytes. Pages 42–86. In: Vascular Plants as Epiphytes Evolution and Ecophysiology. Springer–Verlag Berlin Heidelberg, Germany.270 p.

Malezieux E., F. E. Cote and D. P. Bartholomew. 2003. Crop Environment, Plant Growth and Physiology. Pages 69–107. In: The Pineapple Botany, Production and Uses. University of Hawaii at Manoa Honolulu. CABI Publishing. USA. 301 p.

Nobel, P. S. and E. de la Barrera. 2004. CO2 uptake by the cultivated hemiepiphytic cactus, Hylocereus undatus. . Ann. appl. Biol. 144 (1): 1–8.

Ritchie, R. J. and S. Bunthawin. 2010b. Photosynthesis in Pineapple (Ananas comosus (L.) Merr) Measured Using PAM (Pulse Amplitude Modulation) Fluorometry. Tropical Plant Biol. 3(4): 193–203.

Vieira, D.A.P., T.A. Portes, E. Stacciarini -Seraphin and J.B. Teixeira. 2010. Fluorescence andlevelsof chlorophyll in pineapple plants cv. péérola submitted to different concentration of ammonium sulphate. Rev. Bras. Frutic. 32 (2):360–368.

von Caemmerer, S. 2000. Biochemical models of leaf photosynthesis. CSIRO Publishing. 165 p.



How to Cite

Chuennakorn, P., & Yingjajaval, S. (2020). Diurnal Leaf Net CO 2 Assimilation, Acid Content and Photochemistry of Pineapple (Ananas comosus L. Merr.) ‘Smooth Cayenne’. Thai Agricultural Research Journal, 38(3). https://doi.org/10.14456/thaidoa-agres.2020.23



Technical or research paper