A Rapid, Economical and Hazardous Organic Solvent Free Method for DNA Extraction from Cassava

Authors

  • Jeeraporn Kansup Biotechnology Research and Development Office, Department of Agriculture
  • Tanavadee Kumchoo
  • Vipavee Chanroj
  • Suphawadee Ngorian
  • Suwaluk Amawan
  • Prapit Wongtiem

DOI:

https://doi.org/10.14456/thaidoa-agres.2021.16

Keywords:

DNA extraction, cassava, interfering substance, sodium dodecyl sulfate (SDS), polyvinylpyrrolidone (PVP)

Abstract

The extraction of good quality DNA from leaves of cassava is a complicated process
due to the presence of interfering substances such as polyphenols and polysaccharides that
affect the quality of DNA. In hexadecyltrimethylammonium bromide or CTAB method which
is widelyusedfor DNA extraction,hazardousorganic solvents suchasphenol andchloroform
are required to remove these interfering substances. The whole process does take
approximately 130 minutes making it unsuitable for extracting large number of DNA samples.
The objective of this research was to develop a DNA extraction method from cassava leaves
which is rapid, free of harmful organic solvents, does not use liquid nitrogen, as well as cost
and time effective. The DNA extraction method developed in this research was based on
sodium dodecyl sulfate/sodium chloride or SDS/NaCl method. The SDS/NaCl+PVP method
yielded DNA amount in the range of 1,431.4 - 1,510.3 µg per 1g of leaf sample with absorption
ratios A260/A280 of 1.74 - 1.90. Agarose gel electrophoresis showed the intact, sharp and clear
DNA bands with little degradation. The extracted DNA could be used in restriction analysis
and as template in polymerase chain reaction (PCR) using many types of primer including
housekeeping gene, universal, SCAR, EST and SSR primers in both of single and multiplex
PCR. It indicated that the DNA extracted by SDS/NaCl+PVP method had purity, good quality
and was suitable for molecular analyses such as restriction digestion and PCR
amplification.The wholeprocessof DNA extractionusing SDS/NaCl+PVP methodtook about
48 minutes.

Downloads

Download data is not yet available.

References

จีราพร แก่นทรัพย์ สุวลักษณ์ อะมะวัลย์ ประพิศ วองเทียม อรุโณทัย ซาววา สุภาวดี ง้อเหรียญ ดนัย นาคประเสริฐ และ จิณณจาร์ หาญเศรษฐสุข. 2563. การใช้เครื่องหมายโมเลกุลในการคัดเลือกพันธุ์มันสำปะหลังต้านทานโรคใบด่าง Cassava Mosaic Disease. ว.วิชาการเกษตร. 38(1): 68-79.

Akano, A.O., A.G.O. Dixon, C. Mba, E. Barrera and M. Fregene. 2002. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor. Appl. Genetics. 105: 521-525.

Calderón-Cortés, N., M. Quesada, H. Cano-Camacho and G. Zavala-Páramo. 2010. A simple and rapid method for DNA isolation from xylophagous insects. Int. J. Mol. Sci. 11(12):5056-5064.

Carmo, C.D., M.S. Silva, G.A.F. Oliveira and E.J. Oliveira. 2015. Molecular-assisted selection for resistance to cassava mosaic disease in Manihot esculenta Crantz. Sci. Agric. 72(6): 520-527.

Dellaporta, S.L., J. Wood and J.B. Hicks. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1:19–21.

Devi, K.D., K. Punyarani, N.S. Singh, et al. 2013. An efficient protocol for total DNA extraction from the members of order Zingiberales- suitable for diverse PCR based downstream applications. Springer Plus. 2: 669.

Do, N. and R.P. Adams. 1991. A simple technique for removing plant polysaccharide contaminants from DNA. Biotechniques. 10(2):162-168.

Dona, F and J. Houseley. 2014. Unexpected DNA loss mediated by the DNA binding activity of ribonuclease A. PLoS One. 9(12): e115008.

Edwards, K., C. Johnstone and C. Thompson. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19:1349.

Fregene, M., N. Morante, T. Sánchez, et al. 2006. Molecular markers for introgression of useful traits from wild Manihot relatives of cassava, marker-assisted selection (MAS) of disease and root quality traits. J. Root Crops. 32: 1-31.

Hautea, R.A. and M. Escaler. 2004. Plant biotechnology in Asia. Ag Bio Forum. 7(1):2-8.

Jadhav, K.P., R.V. Ranjani and N. Senthil. 2015. Chemistry of plant genomic DNA extraction protocol. BIOINFOLET. 12(3A): 543-548.

John, M.E. 1992. An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Res. 20(9):2381.

Khanuja, S.P., A.K. Shasany, M. Darokar, et al. 1999. Rapid Isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol. Biol. Rep. 17: 74.

Kim, C.S., C.H. Lee, J.S. Shin, Y.S. Chung and N.I. Hyung. 1997. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res. 25(5): 1085–1086.

Kotchoni, S.O. and E.W. Gachomo. 2009. A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants. Mol. Biol. Rep. 36: 1633–1636.

Kress, W.J., D.L. Erickson, F.A. Jones, N.G. Swenson, R. Perez, O. Sanjur and E. Bermingham. 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. PNAS. 106 (44): 18621-18626.

Levin, R.A., W.L. Wagner, P.C. Hoch, M. Nepokroeff, J.C. Pires, E.A. Zimmer and K.J. Sytsma. 2003. Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am. J. Bot. 90(1):107-115.

Maniatis,T., J. Sambrook and E.F. Fritsch. 1982. Molecular cloning, pp. 76-85. In : A laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, New York.

Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 19:4321–4325.

Okogbenin, E., C.N. Egesi, B. Olasanmi, et al. 2012. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria. Crop Sci. 52(6): 2576–2586.

Osena, G., E.N. Nyaboga and N. Amugune. 2017. Rapid and efficient isolation of high quality DNA from cassava (Manihot esculenta Crantz) suitable for PCR based downstream applications. Annu. Res. Rev. Biol. 12(2): 1-10.

Parvathy, V.A., V.P. Swetha, T.E. Sheeja and B. Sasikumar. 2015. Detection of plant-based adulterants in turmeric powder using DNA barcoding. Pharm. Biol. 53(12): 1774-1779.

Porebski, S., L.G. Bailey and B.R. Baum. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8–15.

Sahu, S.K., M. Thangaraj and K. Kathiresan. 2012. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol. Biol. 2012:205049.

Sharma, K., A.K. Mishra and R.S. Misra. 2008. A simple and efficient method for extraction of genomic DNA from tropical tuber crops. Afr. J. Biotechnol. 7: 1018-1022.

White, T.J., T.D. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In: Innis, M.A., D.H. Gelfand, J.J. Sninsky, T.J. White eds. PCR protocols, a guide to methods and applications. Academic Press, San Diego, California.

Yao, H., J. Song, C. Liu, K. Luo, J. Han, Y. Li, X. Pang, H. Xu, Y. Zhu, P. Xiao and S. Chen. 2010. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One. 5(10):e13102.

Published

2021-05-05

How to Cite

Kansup จ. ., Kumchoo ธ., Chanroj . ว., Ngorian ส., Amawan ส., & Wongtiem ป. . (2021). A Rapid, Economical and Hazardous Organic Solvent Free Method for DNA Extraction from Cassava . Thai Agricultural Research Journal, 39(2). https://doi.org/10.14456/thaidoa-agres.2021.16

Issue

Section

Technical or research paper