Comparative Analysis of Percentage Disease Index and Area Under the Curve for Classifying Northern Corn Leaf Blight Severity

Authors

  • Theerawut Wongwarat Khon Kaen Field Crop Research Center, Mueang, Khon Kaen 40000, Thailand
  • Chaowanart Phruetthithep Field and Renewable Energy Crops Research Institute, Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand
  • Suwara Wutthiaumphon Chai Nat Field Crop Research Center, Sapphaya, Chai Nat 17150, Thailand
  • Panuwat Sinlapasakkajohn Chai Nat Field Crop Research Center, Sapphaya, Chai Nat 17150, Thailand

DOI:

https://doi.org/10.14456/thaidoa-agres.2025.24

Keywords:

sweet corn, northern corn leaf blight, disease severity

Abstract

Northern corn leaf blight (NCLB, Exserohilum turcicum) is one of the most significant foliar diseases of maize, directly affecting sweet corn yield. Accurate assessment of disease severity is essential for screening resistant lines. This study compared the effectiveness of the percentage disease index (PDI) and the area under a disease progress curve (AUDPC) in evaluating the severity of NCLB in sweet corn. The experiment was conducted on the sixth generation (S6) of self-pollinated hybrid sweet corn at the Chiang Mai Field Crops Research Center from December 2021 to February 2022. E. turcicum was artificially inoculated, and PDI was assessed at two time points: 28 and 55 days after planting (DAP). The AUDPC was then calculated and analyzed using the receiver operating characteristic (ROC) curve and Youden index to determine the critical threshold for disease severity classification. The correlation analysis revealed that PDI at 28 DAP was unsuitable for classifying disease severity, whereas PDI at 55 DAP and AUDPC based on observations at both 28 and 55 DAP showed a statistically significant correlation. Furthermore, the threshold value determined by AUDPC, in conjunction with ROC curve and Youden index was 910.88, with an area under the ROC curve (AUC) of 1, indicating highly accurate discrimination between resistant and susceptible sweet corn genotypes. Therefore, AUDPC combined with ROC curve and Youden’s index was more effective and reliable than using PDI at 55 DAP alone and can serve as a valuable tool in future research on breeding sweet corn resistant to NCLB.

References

กรมวิชาการเกษตร. 2565. การผลิตข้าวโพดหวาน. แหล่งข้อมูล: https://www.doa.go.th/hort/wp-content/uploads/2020/01/การผลิตข้าวโพดหวาน.pdf. สืบค้น: 9 กันยายน 2565.

ฉลอง เกิดศรี ภานุวัฒน์ ศิลปศักดิ์ขจร ธีรวุฒิ วงศ์วรัตน์ สุพรรณณี เป็งคำ เชาวนาถ พฤทธิเทพ วรรษมน มงคล พงศ์พันธุ์ เบ้าทอง และธีรยุทธ อุดมสันติสุข. 2567. การปรับปรุงพันธุ์ข้าวโพดหวานลูกผสมต้านทานโรคใบไหม้แผลใหญ่. หน้า 21-27. ใน: เอกสารประกอบการสัมมนาวิชาการปี 2567 ศูนย์วิจัยพืชไร่ชัยนาท สถาบันวิจัยพืชไร่และพืชทดแทนพลังงาน. 31 ก.ค.–2 ส.ค. 2567. ณ บึงฉวากรีสอร์ท, สุพรรณบุรี.

เชาวนาถ พฤทธิเทพ กัลยา วิธี วรรษมน มงคล กิตติภพ วายุภาพ พีระวรรณ พัฒนวิภาส จิราลักษณ์ ภูมิไธสง ชูชาติ บุญศักดิ์ และสุมนา งามผ่องใส. 2560. ผลกระทบของโรคใบไหม้แผลใหญ่ที่เกิดจากเชื้อรา Exserohilum turcicum ต่อคุณภาพผลผลิตและคุณภาพของข้าวโพดหวาน. หน้า 235-243. ใน: เอกสารประกอบการประชุมวิชาการข้าวโพดและข้าวฟ่างแห่งชาติ ครั้งที่ 38. กรมวิชาการเกษตร. 25-27 กรกฎาคม 2560. ณ โรงแรมแกรนด์ฮิลล์ รีสอร์ท แอนด์ สปา, นครสวรรค์.

ประชุม จุฑาวรรธนะ ธรรมศักดิ์ สมมาตย์ อุดม ภู่พิพัฒน์ และจีรนันท์ แหยมสูงเนิน. 2544. การคัดเลือกพันธุ์ต้านทานข้าวโพดใบไหม้แผลใหญ่. หน้า 101. ใน: ครบรอบสิบปี สถาบันอินทรีจันทรสถิตย์เพื่อการค้นคว้าและพัฒนาพืชศาสตร์. มหาวิทยาลัยเกษตรศาสตร์. กรุงเทพฯ.

Atac, A. 1984. Survey of fungus diseases of second crop maize in the Mediterranean region. Bitki Koruma Bultini. 24(3): 137-143.

Bankole, F.A., B. Badu-Apraku, A.O. Salami, T.D. Falade,

R. Bandyopadhyay and A. Ortega-Beltran. 2023. Variation in the morphology and effector profiles of Exserohilum turcicum isolates associated with the Northern Corn Leaf Blight of maize in Nigeria. BMC Plant Biology. 23(1): 386.

Campbell, C.L. and L.V. Madden. 1990. Introduction to Plant Disease Epidemiology. John Wiley & Sons. New York. USA. 532 p.

Corbacioglu, S.K. and G. Aksel. 2023. Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of Emergency Medicine. 23(4): 195-198.

De Rossi, R.L., F.A. Guerra, M.C. Plazas, E.E. Vuetic, E. Brücher, G.D. Guerra and E.M. Reis. 2022. Crop damage, economic losses, and the economic damage threshold for northern corn leaf blight. Crop Protection. 154: 105901.

Duffy, B., A. Schouten and J.M. Raaijmakers. 2003. Pathogen self-defense: Mechanism to counteract microbial antagonism. Annual Review of Phytopathology. 41(1): 501-538.

Fkih, F. and M.N. Omri. 2012. Information retrieval from unstructured web text document based on automatic learning of the threshold. International Journal of Information Retrieval Research. 2(4): 12-30.

Hajian-Tilaka, K. 2018. The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Statistical Methods in Medical Research. 27(8): 2374-2383.

Hurni, S., D. Scheuermann, S.G. Krattinger, B. Kessel, T. Wicker, G. Herren, M.N. Fitze, J. Breen, T. Presterl, M. Ouzunova and B. Keller. 2015. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proceedings of the National Academy of Sciences of the United States of America (PNAS). 112(28): 8780-8785.

Jeger, M.J. and S.L.H. Viljanen-Rollinson. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics. 102(1): 32-40.

Levy, Y. and J.K. Pataky. 1992. Epidemiology of northern leaf blight on sweet corn. Phytoparasitica. 20(1): 53-66.

Levy, Y. and Y. Cohen. 1983. Biotic and environmental factors affecting infection of sweet corn with Exserohirum turcicum. Phytopathology. 73(5): 722-725.

Li, D.L., F. Shen, Y. Yue, J.X. Peng and P.Y. Chen. 2013. Weighted youden index and its two-independent-sample comparison based on weighted sensitivity and specificity. Chinese Medical Journal. 126(6): 1150-1154.

Lobo, J.M., A. Jimenez-Valverde and R. Real. 2008. AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography. 17(2): 145-151.

Min, J., Z. ChunYu, H. Khalid, L. Nan, S. Quan, M. Qing, W. SuWen and L. Feng. 2012. Pyramiding resistance gene to northern leaf blight and head smut in maize. International Journal of Agriculture and Biotechnology. 14(3): 430-434.

Pokhrel, B. 2021. Effects of environment factors on crop disease. Journal of Plant Pathology and Microbiology. 12(5): 553.

Rahman, H.A., A.A. Noraidi, A.N.H. Khalid, A.Z. Mohamad-Adam, N.H. Zahari and N.E. Tuming. 2025. Practical guide to calculate sample size for chi-square in biomedical research. BMC Medical Research Methodology. 25: 144.

Ruopp, M.D., N.J. Perkins, B.W. Whitcomb and E.F. Schisterman. 2008. Youden index and optimal cut-point estimated from observationa affected by a lower limit of detection. Biometrical Journal: Journal of Mathematical Methods in Biosciences. 50(3): 419-430.

Setyawan, B., I. Suliansyah, A. Anwar and E. Swasti. 2016. Resistance of eleven new hybrid maize genotypes to turcicum leaf blight (Exserohirum turcicum). Biodiversitas. 17(2): 604-608.

Smith, C.W., J. Betrán and E.C. Runge. 2004. Corn: Origin, History, Technology, and Production volume 4. John Wiley & Sons, USA.

Stangarlin, J.R., E.L. Tartaro and S.F. Pascholati. 2022. Characterization of Exserhilum turcicum infection sites in maize genotypes. Revista Caatinga. 35(1): 1-13.

Thapa, R., K. Zhang, N. Snanely, S. Belongie and A. Khan. 2020. The plant pathology challenge 2020 data set to classify foliar disease of apples. Applications in Plant Sciences. 8(9): e11390.

Wheeler, B.E.J. 1969. An Introduction to Plant Diseases. John Wiley and Sons Ltd., London. 374 p.

Willocquet, L., S. Savary and K.P. Singh. 2023. Revisiting the use of disease index and of disease scores in plant pathology. Indian Phytopathology. 76(3): 909-914.

Wilson, C.R., N.W. Davies, R. Corkrey, A.J. Wilson, A.M. Mathews and G.C. Westmore. 2017. Receiver operating characteristic curve analysis determines association of individual potato operating characteristic curve analysis determines association of individual potato foliage volatiales with onion thrips preference, cultivar and plant age. PLoS ONE. 12(7): e0181831.

Yang, S. and G. Berdine. 2017. The receiver operating characteristic (ROC) curve. The Southwest Respiratory and Critical Care Chronicles. 5(19): 34-36.

Published

2025-12-16

How to Cite

Wongwarat, T., Phruetthithep, C., Wutthiaumphon, S., & Sinlapasakkajohn, P. (2025). Comparative Analysis of Percentage Disease Index and Area Under the Curve for Classifying Northern Corn Leaf Blight Severity. Thai Agricultural Research Journal, 43(3). https://doi.org/10.14456/thaidoa-agres.2025.24

Issue

Section

Technical or research paper