เครื่องหมายดีเอ็นเอสำหรับคัดเลือกพันธุ์พืชทนทานต่อสภาพแวดล้อมที่ไม่เหมาะสม
DOI:
https://doi.org/10.14456/thaidoa-agres.2022.27คำสำคัญ:
เครื่องหมายดีเอ็นเอ, ความทนทานต่อสภาพแวดล้อมที่ไม่เหมาะสม, ความร้อน, ความเค็ม, ความแห้งแล้งบทคัดย่อ
สภาพแวดล้อมที่ไม่เหมาะสมต่อการเจริญเติบโตของพืช เช่น ความร้อน ความเค็มในดิน ความแห้งแล้ง น้ำท่วม และโลหะ เป็นความเครียดที่เกิดจากสิ่งไม่มีชีวิต (abiotic stress) ที่ส่งผลเสียต่อพัฒนาการของพืชและส่งผลต่อเนื่องไปยังปริมาณและคุณภาพของผลผลิต ในบรรดาความเครียดที่เกิดจากสิ่งไม่มีชีวิต ความร้อน ความเค็ม และความแห้งแล้งเป็นปัญหาที่พบบ่อยและมีความสัมพันธ์อย่างมากกับการเปลี่ยนแปลงของสภาพภูมิอากาศโลก ในปัจจุบัน มีการนำเทคโนโลยีเครื่องหมายดีเอ็นเอมาช่วยในการคัดเลือกพันธุ์เพื่อเพิ่มประสิทธิภาพและความแม่นยำของกระบวนการปรับปรุงพันธุ์พืชในหลายลักษณะทางการเกษตรรวมถึงความทนทานต่อสภาพแวดล้อมที่ไม่เหมาะสม บทปริทัศน์นี้เนื้อหาเกี่ยวกับผลกระทบของความเครียดจากสิ่งไม่มีชีวิตต่อพืช งานวิจัยเครื่องหมายดีเอ็นเอที่เกี่ยวข้องกับความทนทานต่อความร้อน ความเค็ม และความแห้งแล้ง ซึ่งมีตัวอย่างการศึกษาระบุตำแหน่งบนโครโมโซมที่ควบคุมลักษณะเชิงปริมาณ (quantitative trait loci, QTL) ที่สัมพันธ์กับความทนทานต่อความเครียดเหล่านี้ และการนำเครื่องหมายดีเอ็นเอที่เกี่ยวข้องมาใช้ประโยชน์ในการคัดเลือกพันธุ์ทนทานในข้าว มันสำปะหลัง และพืชตระกูลถั่ว นอกจากนี้ มีเนื้อหาเกี่ยวกับแนวทางการใช้เทคโนโลยีเพื่อการคัดเลือกและปรับปรุงพันธุ์พืชในอนาคตอีกด้วย
เอกสารอ้างอิง
จีราพร แก่นทรัพย์ ขนิษฐา วงศ์วัฒนารัตน์ ประสาน สืบสุข และรัชนี โสภา. 2561. การศึกษาความทนทาน
ต่อสภาพน้ำท่วมและสภาพแห้งแล้งของถั่วเหลืองพันธุ์รับรองของกรมวิชาการเกษตรโดยใช้เทคนิคทางชีวโมเลกุล. เอกสารประกอบการสัมมนาวิชาการ เรื่อง งานวิจัยถั่วเหลืองสู่ความมั่นคงด้านอาหารของไทย ประจำปี 2560 ณ ศูนย์วิจัยพืชไร่เชียงใหม่ ระหว่างวันที่ 13 -14 มีนาคม 2561. หน้า 48-51.
จีราพร แก่นทรัพย์ อัจฉราพรรณใจเจริญ รัชนี โสภา และสุมนา งามผ่องใส. 2565. การพัฒนาเครื่องหมาย
โมเลกุลในยีนทนแล้งและทนน้ำท่วม Dehydrin ของถั่วเหลืองพันธุ์รับรองของกรมวิชาการเกษตร. รายงานผลสัมฤทธิ์สำหรับโครงการปกติปีงบประมาณ พ.ศ.2564. สำนักงานคณะกรรมการส่งเสริมวิทยาศาสตร์ วิจัยและนวัตกรรม. 31 หน้า.
Carpentieri-Pipolo, A.E., H.R. Boerma and T.R. Sinclair. 2011. Identification of QTLs associated
with limited leaf hydraulic conductance in soybean. Euphytica. 186: 679–686.
Christou, P. 2013. Plant genetic engineering and agricultural biotechnology 1983-2013. Trends
Biotechnol. 31: 125–127.
De Leon, T.B., S. Linscombe, G. Gregorio and P.K. Subudhi. 2015. Genetic variation in
Southern USA rice genotypes for seedling salinity tolerance. Front. Plant Sci. 6: 374.
Do, T.D., T.D. Vuong, D. Dunn, et al. 2019. Identification of new loci for salt tolerance in
soybean by high-resolution genome-wide association mapping. BMC Genomics.
: 318.
Dong, O.X. and P.C. Ronald. 2019. Genetic engineering for disease resistance in plants: Recent
progress and future perspectives. Plant Physiol. 180(1): 26-38.
Guan, R.X., Y. Qu, Y. Guo, L.L. Yu, Y. Liu, J.H. Jiang, J.G. Chen, Y.L. Ren, G.Y. Liu, L. Tian, et al.
Salinity tolerance in soybean is modulated by natural variation in GmSALT3.
Plant J. 80(6): 937–950.
Hinojosa, L., M.N.M.E. Sanad, D.E. Jarvis, P. Steel, K. Murphy and A. Smertenko. 2019. Impact
of heat and drought stress on peroxisome proliferation in quinoa. Plant J. 99: 1144–
Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki and K. Shinozaki. 1999. Improving plant
drought, salt, and freezing tolerance by gene transfer of a single stress-inducible
transcription factor. Nat. Biotechnol. 17: 287–291.
Li, X.M., D.Y. Chao, Y. Wu, et al. 2015. Natural alleles of a proteasome α2 subunit gene
contribute to thermotolerance and adaptation of African rice. Nat. Genet. 47: 827–833.
Li, Y., Z. Yu, J. Jin, Q. Zhang, G. Wang, C. Liu, J. Wu, C. Wang and X. Liu. 2018. Impact of
elevated CO2 on seed quality of soybean at the fresh edible and mature stages.
Front. Plant Sci. 9, 1413.
Manavalan, L.P., S.K. Guttikonda, L.P. Tran and H.T. Nguyen. 2009. Physiological and
molecular approaches to improve drought resistance in soybean, Plant Cell Physiol. 50(7): 1260 – 1276.
Meuwissen, T.H.E., B.J. Hayes and M.E. Goddard.2001. Prediction of total genetic value using
genome-wide dense marker maps. Genetics. 157: 1819–1829.
Nadeem, M., J. Li, M. Yahya, A. Sher, C. Ma, X. Wang and L. Qiu. 2019. Research progress and
perspective on drought stress in legumes: a review. Int J Mol Sci. 20(10): 2541.
Rasaei, B., M.E. Ghobadi, M. Khas-Amiri and M. Ghobadi. 2013. Effect of osmotic potential on
germination and seedling characteristic of soybean seeds. Intl J Agri Crop Sci. 5: 1265-
Ren, Z.H., J.P. Gao, L.G. Li, X.L. Cai, W. Huang, D.Y. Chao, et al. 2005. A rice quantitative trait
locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37: 1141–1146.
Tuyen, D., S. Lal and D. Xu. 2010. Identification of a major QTL allele from wild soybean
(Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean.
Theor. Appl. Genet. 121: 229–236.
Ullah, I. 2009. Molecular Genetic Studies for Drought Tolerance in Cotton. Ph.D. Thesis,
Quaid-i-Azam University, Islamabad, Pakistan.
Waghmare, S. G., P. Sindhumole, M.R. Shylaja, D. Mathew, R.M. Francies, P.S. Abida and S.
Sajini. 2018. Analysis of simple sequence repeat (SSR) polymorphism between N22 and Uma rice varieties for marker assisted selection. Electron. J. Plant Breed. 9(2): 511-517.
Wang, B., X. Guo, P. Zhao, M. Ruan, X. Yu, L. Zou, Y. Yang, X. Li, D. Deng, J. Xiao, et al. 2017.
Molecular diversity analysis, drought related marker-traits association mapping and
discovery of excellent alleles for 100-day old plants by EST-SSRs in cassava
germplasms (Manihot esculenta Cranz.) PLoS ONE. 12: e0177456.
Warpeha, K.M., S.S. Lateef, Y. Lapik, M. Anderson, B.S. Lee and L.S. Kaufman. 2006. G-protein-
coupled receptor 1, G-protein Ga-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiol. 140: 844–855.
Yang, H., X. Gu, M. Ding, W. Lu and D. Lu. 2018. Heat stress during grain filling affects activities
of enzymes involved in grain protein and starch synthesis in waxy maize. Sci. Rep. 8:
Younis, A., F. Ramzan, Y. Ramzan, F. Zulfiqar, M. Ahsan and K.B. Lim. 2020. Molecular markers
improve abiotic stress tolerance in crops: a review. Plants (Basel). 9(10): 1374.
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
ลิขสิทธิ์ (c) 2022 วารสารวิชาการเกษตร

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
วารสารวิชาการเกษตร