Bridging Therapeutic Gaps in Upper Respiratory Tract Infections: The Potential of Silver Nanoparticles in Modern Topical Formulations
Main Article Content
Abstract
Upper respiratory tract infections (URTIs) remain a significant health issue, with current treatments limited to symptom management and antibiotics for bacterial cases. No approved topical treatments exist for prevention and treatment across pathogens. Silver nanoparticles (AgNPs) are promising due to their broad-spectrum antimicrobial properties, disrupting microbial cells and essential functions. This review evaluates the efficacy, safety, and potential of AgNP-based topical treatments like nasal sprays and microemulsions, which offer localized action, reduced side effects, and improved adherence. While nasal sprays provide convenience, microemulsions enhance bioavailability through sustained release. However, large-scale trials are needed to validate their safety and effectiveness. Unlike existing reviews, this work focuses specifically on topical applications, comparing different delivery systems and highlighting their respective advantages. The review outlines key pharmacological insights and proposes research directions for developing targeted, effective URTI therapies.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Upon acceptance of an article, the Pharmacological and Therapeutic Society of Thailand will have exclusive right to publish and distribute the article in all forms and media and grant rights to others. Authors have rights to use and share their own published articles.
References
Thomas M, Bomar PA. Upper respiratory tract infection. [Updated 2023 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532961/
GBD 2021 Upper Respiratory Infections Otitis Media Collaborators. Global, regional, and national burden of upper respiratory infections and otitis media, 1990–2021: a systematic analysis from the Global Burden of Disease Study 2021. Lancet Infect Dis. 2025 Jan;25(1):36–51.
Carr TF. Complications of sinusitis. Am J Rhinol Allergy. 2016;30(4):241-245.
Chow AW, Benninger MS, Brook I, Brozek JL, Goldstein EJ, Hicks LA, et al. IDSA clinical practice guideline for acute bacterial rhinosinusitis in children and adults. Clin Infect Dis. 2012;54(8):e72-e112.
Patel ZM, Hwang PH. Acute bacterial rhinosinusitis. Infections of the Ears, Nose, Throat, and Sinuses. 2018:133-143.
Liang J, Lane AP. Topical drug delivery for chronic rhinosinusitis. Curr Otorhinolaryngol Rep. 2013 Mar 1;1(1):51-60.
Shahan B, Barstow C, Mahowald M. Respiratory conditions: upper respiratory tract infections. FP Essent. 2019;486:11-18.
Reed KD. Respiratory tract infections: a clinical approach. Molecular Medical Microbiology. 2015:1499–1506.
Grant J, Saux NL. Duration of antibiotic therapy for common infections. J Assoc Med Microbiol Infect Dis Can. 2021;6(3):181-197.
Stathis C, Victoria N, Loomis K, Nguyen SA, Eggers M, Septimus E, et al. Review of the use of nasal and oral antiseptics during a global pandemic. Future Microbiol. 2021 Jan;16(2):119-130.
Wang Y, Eccles R, Bell J, Chua AH, Salvi S, Schellack N, et al. Management of acute upper respiratory tract infection: the role of early intervention. Expert Rev Respir Med. 2021 Dec;15(12):1517-1523.
Pinto LM, Chiricozzi A, Calabrese L, Mannino M, Peris K. Novel Therapeutic strategies in the topical treatment of atopic dermatitis. Pharmaceutics. 2022 Dec 10;14(12):2767.
Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev. 2017;30(3):827-860.
Corsello A, Milani GP, Picca M, Buzzetti R, Carrozzo R, Gambino M, et al. Recurrent upper respiratory tract infections in early childhood: a newly defined clinical condition. Ital J Pediatr. 2024 Feb 16;50(1):30.
Andersson M, Pedersen JS, Palmqvist AE. Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir. 2005;21(24):11387-11396.
Alexander JW. History of the medical use of silver. Surg Infect (Larchmt). 2009;10:289-292.
Frei A. Metal complexes, an untapped source of antibiotic potential?. Antibiotics (Basel). 2020;9(2):90.
Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26:117-130.
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52:1636-1653.
Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6:1769–1780.
Morsi NM, Abdelbary GA, Ahmed MA. Silver sulfadiazine-based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur J Pharm Biopharm. 2014;86:178-189.
Sierra MA, Casarrubios L, de la Torre MC. Bio-organometallic derivatives of antibacterial drugs. Chemistry. 2019;25:7232-7242.
Aziz Z, Abu SF, Chong NJ. A systematic review of silver-containing dressings and topical silver agents for burn wounds. Burns. 2012;38:307-318.
Vasilev K, Cook J, Griesser HJ. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices. 2009;6:553-567.
U.S. National Library of Medicine [Internet]. [cited 2020 June 8]. Available from: https://www.clinicaltrials.gov/
Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P. Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. New J Chem. 2021;45(32):14328–14344.
Roy A, Butola BS, Joshi M. Synthesis, characterization and antibacterial properties of novel nano-silver loaded acid activated montmorillonite. Appl Clay Sci. 2017;146:278-285.
Ahmad A, Haneef M, Ahmad N, Kamal A, Jaswani S, Khan F. Biological synthesis of silver nanoparticles and their medical applications (Review). World Acad Sci J. 2024;6:22.
Dhir R, Chauhan S, Subham P, Kumar S, Sharma P, Shidiki A, et al. Plant-mediated synthesis of silver nanoparticles: unlocking their pharmacological potential-a comprehensive review. Front Bioeng Biotechnol. 2024 Jan 9;11:1324805.
Ingale AG, Chaudhari AN. Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotech. 2013;4(165):1-7.
Mali SC, Raj S, Trivedi R. Biosynthesis of copper oxide nanoparticles using Enicostemma axillare leaf extract. Biochem Biophys Reports. 2019;20:100699.
Mali SC, Dhaka A, Githala CK, Trivedi R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep (Amst). 2020 Aug 11;27:e00518.
Sundeep D, Vijaya Kumar T, Rao PSS, Ravikumar RVSSN, Gopala Krishna A. Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Prog Biomater. 2017 May;6(1-2):57-66.
Reddy JM, Anitha R, Rajeshkumar S, Lakshmi T. Characterisation of cumin oil mediated silver nanoparticles using UV-visible spectrophotometer and TEM. Res J Pharm Technol. 2019;12(10):4891–4894.
Koduru JR, Kailasa SK, Bhamore JR, Kim KH, Dutta T, Vellingiri K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review. Adv Colloid Interface Sci. 2018 Jun;256:326-339.
Bala A, Rani G. A review on phytosynthesis, affecting factors and characterization techniques of silver nanoparticles designed by green approach. Int Nano Lett. 2020;10(3):159-176.
Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020;11(1):1-8.
Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023 Apr 17;14:1155622.
Calderón-Jiménez B, Sarmanho GF, Murphy KE, Montoro Bustos AR, Vega-Baudrit JR. NanoUV-VIS: an interactive visualization tool for monitoring the evolution of optical properties of nanoparticles throughout synthesis reactions. J Res Natl Inst Stand Technol. 2017 Sep 20;122:1-10.
Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014 Jul-Aug;32(4):711-726.
Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 2020 Nov 19;15(1):819-839.
Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology. 2021 Jan 27;19(1):32.
Giannini C, Ladisa M, Altamura D, Siliqi D, Sibillano T, De Caro L. X-ray diffraction: A powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals. 2016;6(8):87.
Titus D, Samuel EJJ, Roopan SM. Nanoparticle characterization techniques. In: Green synthesis, characterization and applications of nanoparticles. Elsevier; 2019. p. 303-319.
Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534.
Abdalfattah IA, Mogawer WS, Stuart K. Quantification of the degree of blending in hot-mix asphalt (HMA) with reclaimed asphalt pavement (RAP) using energy dispersive X-ray spectroscopy (EDX) analysis. J Clean Prod. 2021;294:126261.
Aygün A, Ozdemir S, Gülcan M, Cellat K, Sen F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm Biomed Anal. 2020;178:112970.
Souto EB, Cano A, Martins-Gomes C, Coutinho TE, Zielińska A, Silva AM. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering (Basel). 2022;9(4):158.
Crane JK. Metal nanoparticles in infection and immunity. Immunol Invest. 2020;49(7):794-807.
Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials (Basel). 2020 Feb 9;10(2):292.
Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae. 2011;3(2):34-55.
Milan J, Niemczyk K, Kus-Liśkiewicz M. Treasure on the earth-gold nanoparticles and their biomedical applications. Materials (Basel). 2022;15(9):3355.
Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20(4):865.
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996-9031.
Chavda VP, Baviskar KP, Vaghela DA, Raut SS, Bedse AP. Nasal sprays for treating COVID-19: a scientific note. Pharmacol Rep. 2023;75(2):249-265.
Little P, Vennik J, Rumsby K, Stuart B, Becque T, Moore M, et al. Nasal sprays and behavioural interventions compared with usual care for acute respiratory illness in primary care: a randomised, controlled, open-label, parallel-group trial. Lancet Respir Med. 2024 Aug;12(8):619–632.