THE STUDIES ON INHIBITION OF ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM OF 12 MEDICINAL PLANT CRUDE EXTRACTS AND THEIR MIXTURES

Authors

  • Nipon Sonhom -
  • Weerapong Woraprayote
  • Kittaporn Rumjuankiat

Keywords:

Rheum palmatum, Boesenbergia rotunda, Rhinacanthus nasutus, Crude extract, Antibacterial activity

Abstract

Antibacterial activity of aqueous and ethanolic crude extracts from twelve Thai medicinal
plants was studied on inhibition of five strains of Escherichia coli and one strain of Salmonella
typhimurium using spot-on-lawn method including time-kill kinetic assay and synergistic effect of
mixtures. Ethanolic crude extracts from the root of Rheum palmatum L., the rhizome of Boesenbergia
rotunda (L.) Mansf. and aerial part of Rhinacanthus nasutus L. exhibited minimum inhibitory
concentration (MIC) values ranging from 0.19-0.78, 0.19-0.78 and 0.19-1.56 mg/mL, respectively.
Ethanolic crude extract of R. palmatum L. inhibited both bacteria at more than 2 log CFU/mL in
12 h. Synergistic effects of mixture of crude extracts of B. rotunda, R. nasutus and R. palmatum
were tested using checkerboard method. Crude extract of B. rotunda and R. nasutus synergized
antibacterial activity with R. palmatum crude extract against E. coli O157H:7 and S. typhimurium
ATCC13311 at fractional inhibitory concentration index (FICI) of 0.5. E. coli O157H:7 and S. typhimurium
ATCC13311 were inhibited at more than 2 log CFU/mL in less than 6 h by mixture of crude extracts
of R. palmatum and B. rotunda at concentrations of 0.09 and 0.19 mg/mL, respectively.

References

Adnan, M., Bibi, R., Mussarat, S., Tariq, A., & Shinwari, Z. K. (2014). Ethnomedicinal and phytochemical review of Pakistan medicinal plants used as antibacterial agents against Escherichia coli. Annals of Clinical Microbiology and Antimicrobials, 13(1), 1-18.

Ahmad , M. I., Keach, J. E., Behl, T., & Panichayupakaranant, P. (2019). Synergistic effect of α-mangostin on antibacterial activity of tetracycline, erythromycin, and clindamycin against acne involved bacteria. Chinese Herbal Medicines, 11(4), 412-416.

Berthe, T., Ratajczak, M., Clermont, O., Denamur, E., & Petit, F. (2013). Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Applied and Environmental Microbiology, 79(15), 4684-4693.

Coburn, B., Grassl, G. A., & Finlay, B. B. (2007). Salmonella, the host and disease: a brief review. Immunology and Cell Biology, 85(2), 112-118.

Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582.

Dai, L. X., Li, J. C., Miao, X. L., Guo, X., Shang, X. F., Wang, W. W., & Zhang, J. Y. (2021). Ultrasoundassisted extraction of five anthraquinones from Rheum palmatum water extract residues and the antimicrobial activities. Industrial Crops and Products, 162, 1-12.

Department of disease control. (2022). Prevention of diseases and health hazards occurring in the summer of Thailand, 2022. Announcement of the department of disease control.

Ennahar, S., Asou, Y., Zendo, T., Sonomoto, K., & Ishizaki, A. (2001). Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. International Journal of Food Microbiology, 70(3), 291-301.

Gadisa, E., Weldearegay, G., Desta, K., Tsegaye, G., Hailu, S., Jote, K., & Takele, A. (2019). Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complementary and Alternative Medicine, 19(1), 1-9.

Gänzle, M. G. (2015). Lactic metabolism revisited metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106-117.

Institute of public health sciences. (2014).Escherichia coli. Retrieved from http://nih.dmsc.moph. go.th/data/data/fact_sheet/12_57.pdf [1 เมษายน 2565]

Jarriyawattanachaikul, W., Chaveerach, P., & Chokesajjawatee, N. (2016). Antimicrobia lactivity

of Thai-herbal plants against food-borne pathogens E. coli, S. aureus and C. jejuni.

Agriculture and Agricultural Science Procedia, 11, 20-24.

Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2(2), 123-140.

Karimi, N., Ghanbarzadeh, B., Hamishehkar, H., Mehramuz, B., & Kafil, H. S. (2018). Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). Colloid and Interface Science Communications, 22, 18-24.

Khan, I., Ullah, Z., Shad, A. A., Fahim, M., & Öztürk, M. (2022). In vitro antioxidant, anticholinesterase inhibitory, and antimicrobial activity studies of Terminalia chebula (Retz) and Terminalia arjuna (Roxb). South African Journal of Botany, 146, 395-400.

Mun, S. H., Joung, D. K., Kim, Y. S., Kang, O. H., Kim, S. B., Seo, Y. S., & Kwon, D. Y. (2013). Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine, 20(8), 714-718.

Orndorff, P. E., Tsolis Renée, M., Adams, L. G., Ficht Thomas, A., & Bäumler Andreas, J. (1999). Contribution of Salmonella Typhimurium virulence factors to diarrheal disease in calves. Infection and Immunity, 67(9), 4879-4885.

Packiavathy, I. A. S. V., Priya, S., Pandian, S. K., & Ravi, A. V. (2014). Inhibition of biofilm development of uropathogens by curcumin an anti-quorum sensing agent from Curcuma longa. Food Chemistry, 148, 453-460.

Saeedi, P., Yazdanparast, M., Behzadi, E., Salmanian, A. H., Mousavi, S. L., Nazarian, S., & Amani, J.(2017). A review on strategies for decreasing E. coli O157:H7 risk in animals Microbial Pathogenesis, 103, 186-195.

Saeloh, D., & Visutthi, M. (2021). Efficacy of Thai plant extracts for antibacterial and anti-Biofilm activities against pathogenic bacteria. Antibiotics, 10(12), 1-9.

Sen A, & Batra A. (2012). Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. International Journal of Current Pharmaceutical Research. 4(2), 67-73.

Stompor-Gorący, M. (2021). The health benefits of emodin, a natural anthraquinone derived from rhubarb a summary update. International Journal of Molecular Sciences, 22(17), 1-16.

Techaoei, S. (2022). Time-kill kinetics and antimicrobial activities of Thai medical plant extracts against fish pathogenic bacteria. Journal of Advanced Pharmaceutical Technology and Research, 13(1), 25-29.

Ye, H., Shen, S., Xu, J., Lin, S., Yuan, Y., & Jones, G. S. (2013). Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control, 34(2), 619-623.

Zhang, Q. Y., Wang, F. X., Jia, K. K., & Kong, L. D. (2018). Natural product interventions for chemotherapy and radiotherapy-induced side effects. Frontiers in Pharmacology, 9, 1-25.

Zhang, Y., Zhou, L., Ma, W., Shi, X., Zhang, H., & Shi, X. (2017). Bidirectional solid fermentation using Trametes robiniophila Murr. for enhancing efficacy and reducing toxicity of rhubarb (Rheum palmatum L.). Journal of Traditional Chinese Medical Sciences, 4(3), 306-313.

Published

2022-12-22

Issue

Section

บทความวิจัย (Research Article)