The Application of Postbiotics as Feed Additives in Aquaculture
Main Article Content
Abstract
Postbiotics are products derived from probiotic microorganisms, consisting of inactivated microbial cells, bacterial cell components, and various metabolites produced during microbial metabolism. These compounds exhibit potential in promoting the health and growth performance of aquatic animals. This article aims to present recent scientific advances in postbiotic research, encompassing preparation methods, bioactive components, biological activities, and the efficacy of postbiotics as feed additives in aquaculture. Current studies indicate that postbiotics can positively influence growth rates, immune responses, gut health, and disease resistance in various aquatic species. Nevertheless, limitations remain regarding the understanding of their mechanisms of action, optimal dosages, and the diversity of commercially available products, which hinder widespread industrial application. Therefore, further in-depth research is recommended to develop more effective postbiotic formulations and to study the potential for synergistic effects with other feed additives. Such developments will play a crucial role in enhancing aquaculture efficiency, reducing antibiotic dependency, and promoting the long-term sustainability of the aquaculture industry
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The content and information in the articles published in the Journal of Science and Technology, Sisaket Rajabhat University reflect the opinions and responsibilities of the respective authors. The editorial board of the journal does not necessarily agree with, nor share responsibility for, these views.
Articles, information, content, images, etc., published in the Journal of Science and Technology, Sisaket Rajabhat University are copyrighted by the Faculty of Science and Technology, Sisaket Rajabhat University. If any individual or organization wishes to republish all or part of the content, or use it for any other purpose, they must obtain written permission from the Journal of Science and Technology, Sisaket Rajabhat University beforehand.
References
Abdel-Latif, H.M.R., Yilmaz, E., Dawood, M.A.O., Ringø, E., Ahmadifar, E. & Yilmaz, S. (2022). Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: A review. Aquaculture, 551, 737951.
Aguilar-Toalá, J.E., Garcia-Varela, R., Garcia, H.S., Mata-Haro, V., González-Córdova, A.F., Vallejo-Cordoba, B. & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105-114.
Ai,Y., Cai, X., Liu, L., Li, J., Long, H., Ren, W., Huang, A.Y., Zhang, X. & Xie, Z.Y. (2022). Effects of different dietary preparations of Enterococcus faecalis F7 on the growth and intestinal microbiota of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Research, 53(8), 3238-3247.
Ang, Q. Y., Alexander, M., Newman, J. C., Tian, Y., Cai, J., Upadhyay, V., Turnbaugh, J. A., Verdin, E., Hall, K. D., Leibel, R. L., Ravussin, E., Rosenbaum, M., Patterson, A. D., & Turnbaugh, P. J. (2020). Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell, 181(6), 1263–1275.e16.
Assefa, A., & Abunna, F. (2018). Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Veterinary medicine international, 2018, 5432497.
Ballantye, R, Lee, J.W., Wang, S.T., Lin, J.S., Tseng, D.Y., Liao, Y.C., Chang, H.T., Lee, T.Y., & Liu, C.H. (2023). Dietary administration of a postbiotic, heat-killed Pediococcus pentosaceus PP4012 enhances growth performance, immune response and modulates intestinal microbiota of white shrimp, Penaeus vannamei. Fish & Shellfish Immunology, 139, 108882.
Banaś, A.K., Zgłobicki, P., Kowalska, E., Bażant, A., Dziga, D., & Strzałka. W. (2020) All you need is light. Photorepair of uv-induced pyrimidine dimers. Genes, 4(11), 1304.
Bariya, A. R., Rathod, N. B., Patel, A. S., Nayak, J. K. B., Ranveer, R. C., Hashem, A., Abd Allah, E. F., Ozogul, F., Jambrak, A. R., & Rocha, J. M. (2023). Recent developments in ultrasound approach for preservation of animal origin foods. Ultrasonics sonochemistry, 101, 106676.
Biswas, G., Korenaga, H., Nagamine, R., Kawahara, S., Takeda, S., Kikuchi, Y., Dashnyam, B., Yoshida, T., Kono, T., & Sakai, T. (2013). Elevated cytokine responses to Vibrio harveyi infection in the Japanese pufferfish (Takifugu rubripes) treated with Lactobacillus paracasei spp. paracasei (06TCa22) isolated from the Mongolian dairy product. Fish & Shellfish Immunology, 35(3), 756-765.
Collado, M.C., Vinderola, G., & Salminen, S. (2019). Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Beneficial microbes, 10(7), 711–719.
Cuevas-González, P. F., Liceaga, A. M., & Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food research international (Ottawa, Ont.), 136, 109502.
Dadi, N.C.T., Yatip, P., Krataitong, K., Unagul, P., Suetrong, S., Preedanon, S., Klaysuban, A., Sangtiean, T., Sakayaroj, J., & Soowannayan, J. (2022). Culture medium from a marine endophytic fungus protects shrimp against acute hepatopancreatic necrosis disease (AHPND). Aquaculture, 737528.
Dash, G., Raman, R. P., Pani Prasad, K., Makesh, M., Pradeep, M. A., & Sen, S. (2015). Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish & shellfish immunology, 43(1), 167–174.
Dawood, M. A., Koshio, S., Ishikawa, M., Yokoyama, S., El Basuini, M. F., Hossain, M. S., Nhu, T. H., Dossou, S., & Moss, A. S. (2016b). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish & shellfish immunology, 49, 275–285.
Dawood, M.A.O. (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Reviews in Aquaculture, 13(1), 642–663.
Dawood, M.A.O., Koshio, S., Ishikawa, M., & Yokoyama, S. (2016a). Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish & Shellfish Immunology, 54, 266-275.
Dawood, M.A.O., Koshio, S., Ishikawa, M., & Yokoyama, S. (2015). Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish & Shellfish Immunology, 45(1), 33-42.
Dawood, M.A.O., Magouz, F.I., Salem, M.F.I., Elbialy, Z.I., & Abdel-Daim, H.A. (2020). Synergetic effects of Lactobacillus plantarum and β-glucan on digestive enzyme activity, intestinal morphology, growth, fatty acid, and glucose-related gene expression of genetically improved farmed Tilapia. Probiotics and Antimicrobial Proteins, 12(2):389-399.
Desnous, C., Guillaume, D., & Clivio, P. (2010). Spore photoproduct: a key to bacterial eternal life. Chemical reviews, 110(3), 1213–1232.
Dhar, S., Kumari, H., Balasubramanian, D., & Mathee, K. (2018). Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa - their role in the development of resistance. Journal of medical microbiology, 67(1), 1–21.
Dianawati, D., Mishra, V., & Shah, N. P. (2016). Viability, Acid and Bile Tolerance of Spray Dried Probiotic Bacteria and Some Commercial Probiotic Supplement Products Kept at Room Temperature. Journal of food science, 81(6), M1472–M1479.
Dittoe, D. K., Ricke, S. C., & Kiess, A. S. (2018). Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. Frontiers in veterinary science, 5, 216.
Duan, H., Wang, L., Huangfu, M., & Li, H. (2023). The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 165, 115276.
Giri, S. S., Jun, J. W., Yun, S., Kim, H. J., Kim, S. G., Kim, S. W., Woo, K. J., Han, S. J., Oh, W. T., Kwon, J., Sukumaran, V., & Park, S. C. (2020). Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio. Aquaculture, 514, 734489.
Hasan, M. T., Jang, W. J., Lee, B. J., Kim, K. W., Hur, S. W., Lim, S. G., Bai, S. C., & Kong, I. S. (2019). Heat-killed Bacillus sp. SJ-10 probiotic acts as a growth and humoral innate immunity response enhancer in olive flounder (Paralichthys olivaceus). Fish & shellfish immunology, 88, 424–431.
Hassaan, M.S., Mohammady, E.Y., Soaudy, M.R., Elashry, M.A., Moustafa, M.M.A., Wassel, M.A., El-Garhy, H.A.S., El-Haroun, E.R., & Elsaied, H.E. (2021). Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth, gut microbes, immune response and gene expression fed plant protein diet. Animal Feed Science and Technology, 275, 114892.
Hernández-Granados, M. J., & Franco-Robles, E. (2020). Postbiotics in human health: Possible new functional ingredients?. Food research international (Ottawa, Ont.), 137, 109660.
Hou, D., Li, M., Li, P., Chen, B., Huang, W., Guo, H., Cao, J., & Zhao, H. (2023). Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass (Micropterus salmoides). Frontiers in immunology, 14, 1265963.
Khochamit, N., Siripornadulsil, S., Sukon, P., & Siripornadulsil, W. (2015). Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiological Research, 170, 36-50.
Li, H., Fan, S., Gao, Y, Cai, Y, Chu, Z., & Wang, L. (2021). Evaluation of modulatory properties of Bacillus cereus isolated from the gut of Litopenaeus vannamai on growth, intestinal morphology, digestive enzyme activities, immune responses and disease resistance of Litopenaeus vannamai. Aquaculture Research, 52(3), 1299-1310.
Li, S., Yang, H., Jin, Y., Hao, Q., Liu, S., Ding, Q., Yao, Y., Yang, Y., Ran, C., Wu, C., Li, S., Cheng, K., Hu, J., Liu, H., Zhang, Z., & Zhou, Z. (2023). Dietary cultured supernatant mixture of Cetobacterium somerae and Lactococcus lactis improved liver and gut health, and gut microbiota homeostasis of zebrafish fed with high-fat diet. Fish & Shellfish Immunology, 142, 109139.
Luo, K., Tian, X., Wang, B., Wei, C., Wang, L., Zhang, S., Liu, Y, Li, T., & Dong, S. (2021). Evaluation of paraprobiotic applicability of Clostridium butyricum CBG01 in improving the growth performance, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei. Aquaculture, 544, 737041.
Ma, J., Piao, X., Mahfuz, S., Long, S., & Wang, J. (2021). The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal nutrition (Zhongguo xu mu shou yi xue hui), 9, 159–174.
Mokoena, M. P., Omatola, C. A., & Olaniran, A. O. (2021). Applications of Lactic Acid Bacteria and Their Bacteriocins against Food Spoilage Microorganisms and Foodborne Pathogens. Molecules (Basel, Switzerland), 26(22), 7055.
Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture. Public health reviews, 39, 21.
Prachachat. (2023). Thailand Breaks 10-Year Record for Fishery Exports, Earning 240 Billion Baht in Revenue [Online]. Retrieved May 31, 2025, from: https://www.prachachat.net/economy/news-1743956. (in Thai)
Rad, A.H., Aghebati Maleki, L., Samadi Kafil, H., Fathi Zavoshti, H., & Abbasi, A. (2020). Postbiotics as novel health-promoting ingredients in functional foods. Health promotion perspectives, 10(1), 3–4.
Raeiszadeh, M. & Taghipour, F. (2021). Inactivation of microorganisms by newly emerged microplasma UV lamps. Chemical Engineering Journal, 413, 127490.
Ran, C., Huang, L., Liu, Z., Xu, L., Yang, Y., Tacon, P., Auclair, E., & Zhou, Z. (2015). A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast. PloS one, 10(12), e0145448.
Rawling, M., Schiavone, M., Mugnier, A., Leclercq, E., Merrifield, D., Foey, A., & Apper, E. (2023). Modulation of Zebrafish (Danio rerio) Intestinal Mucosal Barrier Function Fed Different Postbiotics and a Probiotic from Lactobacilli. Microorganisms, 11(12), 2900.
Ringø, E., Van Doan, H., Lee, S. H., Soltani, M., Hoseinifar, S. H., Harikrishnan, R., & Song, S. K. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of applied microbiology, 129(1), 116–136.
Rodriguez‐Estrada, U., Satoh, S., Haga, S., Fushimi, H., Sweetman, J. (2013). Effects of Inactivated Enterococcus faecalis and Mannan Oligosaccharide and Their Combination on Growth, Immunity, and Disease Protection in Rainbow Trout. North American Journal of Aquaculture, 75(3), 416–428.
Sagada, G., Gray, N, Wang, L., Xu, B., Zheng, L., Zhong, Z., Ullah, S., Tegomo, A.F., & Shao, O. (2021). Effect of dietary inactivated Lactobacillus plantarum on growth performance, antioxidative capacity, and intestinal integrity of black sea bream (Acanthopagrus schlegelii) fingerlings. Aquaculture, 535, 736370.
Sagada, G., Wang, L, Xu, B., Tegomo, F.A., Chen, K., Zheng, L., Sun, Y., Liu, Y., Yang, Y., Ullah, S., Shao, Q. (2022). Synergistic Effect of Dietary Inactivated Lactobacillus plantarum and Berberine Supplementation on Growth Performance, Antioxidant Capacity, and Immune Function of Juvenile Black Sea Bream (Acanthopagrus schlegelii). Aquaculture Nutrition, 2022, 053724.
Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature reviews. Gastroenterology & hepatology, 18(9), 649–667.
Shawky, A. Abd El-Razek, I. El-Halawany, R. & Zaineldin, A. (2023). Dietary effect of heat-inactivated Bacillus subtilis on the growth performance, blood biochemistry, immunity, and antioxidative response of striped catfish (Pangasianodon hypophthalmus). Aquaculture, 575, 739751.
Sheppard, D. C., & Howell, P. L. (2016). Biofilm Exopolysaccharides of Pathogenic Fungi: Lessons from Bacteria. The Journal of biological chemistry, 291(24), 12529–12537.
Singh, H., Bhardwaj, S.K., Khatri, M., Kim, K.H., & Bhardwaj, N. (2021). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal, 417, 128084.
Sudhakaran, G., Guru, A, Muthu, H.D., & Murugan, R. (2022). Molecular properties of postbiotics and their role in controlling aquaculture diseases. Aquaculture Research, 53(9), 1 - 17.
Sun, Y.Z., Xia, H.Q., Yang, H.L., Wang, Y.L., & Zou, W.C. (2014). TLR2 signaling may play a key role in the probiotic modulation of intestinal microbiota in grouper Epinephelus coioides. Aquaculture, 430, 50-56.
Tao, B., Zhang, C., Li, X., Li, X., Lu, K., Song, K., & Wang, L. (2023). Postbiotics of Bacillus subtilis LCBS1 have beneficial effects on bullfrogs (Lithobates catesbeianus). Aquaculture, 574, 739699.
Tao, L.T., Lu H., Xiong J., Zhang L., Sun W.W., & Shan X.F. (2024). The application and potential of postbiotics as sustainable feed additives in aquaculture, Aquaculture, 592, 741237.
Teame, T., Wang, A, Xie, M., Zhang, Z., Yang, Y, Ding, Q., Gao, C., Olsen, R.E., Ran, C., & Zhou Z. (2020). Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Frontiers in Nutrition, 7, 570344.
Tsilingiri, K., & Rescigno, M. (2013). Postbiotics: what else?. Beneficial microbes, 4(1), 101–107.
Van Nguyen, N., Onoda, S., Van Khanh, T., Duy Hai, P., Trung, N.T., Hoang, L., Koshio, S. (2019). Evaluation of dietary Heat-killed Lactobacillus plantarum strain L-137 supplementation on growth performance, immunity and stress resistance of Nile tilapia (Oreochromis niloticus). Aquaculture, 498, 371-379.
Wang, A., Ran, C., Wang, Y., Zhang, Z., Ding, Q., Yang, Y., Olsen, R. E., Ringø, E., Bindelle, J., & Zhou, Z. (2019a). Use of probiotics in aquaculture of China-a review of the past decade. Fish & shellfish immunology, 86, 734–755.
Wang, B., Liu, Y., Luo, K., Zhang, S., Wei, C., Wang, L., Qiu, Y, & Tian, X. (2023a). ‘Biotic’ potential of the red yeast Rhodotorula mucilaginosa strain JM-01 on the growth, shell pigmentation, and immune defense attributes of the shrimp, Penaeus vannamei. Aquaculture, 572, 739543.
Wang, F., Ghonimy, A., Wang, X., Zhang, Y., Zhu, N. (2022). Heat-killed Pseudoalteromonas piscicida 2515 decreased bacterial dose and improved immune resistance against Vibrio anguillarum in juvenile olive flounder (Paralichthys olivaceus). Aquaculture Research, 53(13), 4724-4739.
Wang, J., Li, S., Jian, Y., Song, J., Zheng, J., Zhou, D., Kong, Y., Limbu, S.M., Ye, J., & Ding, Z. (2023b). Dietary postbiotics supplementation improves growth, survival rate, antioxidant capacity, non-specific immunity and gut health of juvenile oriental river prawn (Macrobrachium nipponense). Aquaculture Reports, 33, 101771.
Wang, J., Zhu, Z., Li, R., Wang, X., Leng, X., & Chen, L. (2021a). Impact of supplementary Lactobacillus casei K17 on growth and gut health of largemouth bass Micropterus salmoides. Aquaculture Reports, 20, 100734.
Wang, J., Feng, J., Liu, S., Cai, Z., Song, D., Yang, L., Nie, G. (2021b). The probiotic properties of different preparations using Lactococcus lactis Z-2 on intestinal tract, blood and hepatopancreas in Cyprinus carpio. Aquaculture, 543, 736911.
Wang, K., Cao, G., Zhang, H., Li, Q., & Yang, C., (2019b). Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model. Food & function, 10(12), 7844–7854.
Xiao, R., Liu, K., Bai, L., Minakata, D., Seo, Y., Göktaş, R.K, Dionysiou, D.D., Tang, C.J., Wei, Z., & Spinney, R. (2019). Inactivation of pathogenic microorganisms by sulfate radical: Present and future. Chemical Engineering Journal, 371, 222-232.
Yang, G., Jiang, A., Cai, H., You, F., Wu, S., Zhang, Y, Zhang, X., Shen, Y., Chang, X., Huc, W., Li, K., & Meng, X. (2023). Supplementation with Akkermansia muciniphila improved glucose metabolism disorder in common carp (Cyprinus carpio L.). Aquaculture, 572, 739465.
Yang, H., Han, Y., Ren, T., Jiang, Z., Wang, F., & Zhang, Y. (2016). Effects of dietary heat-killed Lactobacillus plantarum L-137 (HK L-137) on the growth performance, digestive enzymes and selected non-specific immune responses in sea cucumber, Apostichopus japonicus Selenka. Aquaculture Research, 47(9), 2814-2824.
Yu, Z., Hao, Q., Liu, S.B., Zhang, Q.S., Chen, X.Y., Li, S.H., Ran, C., Yang, Y.L., Teame, T., Zhang, Z., & Zhou, Z.G. (2023). The positive effects of postbiotic (SWF concentration®) supplemented diet on skin mucus, liver, gut health, the structure and function of gut microbiota of common carp (Cyprinus carpio) fed with high-fat diet. Fish & Shellfish Immunology, 135, 108681.
Zheng, X., Duan, Y., Dong, H., & Zhang, J. (2018). Effects of Dietary Lactobacillus plantarum on Growth Performance, Digestive Enzymes and Gut Morphology of Litopenaeus vannamei. Probiotics and antimicrobial proteins, 10(3), 504–510.
Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M., & Noskova, S. (2020). Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics, 9(9), 553.