Salt Stress Treatment and Salt Exposure time Altered Physiological Characteristics in Thai Rice (Oryza sativa L. subsp. indica)

Main Article Content

Kongake Siringam*
Niran Juntawong
Sittiruk Roytrakul
Suriyan Cha-um
Chalermpol Kirdmanee

Abstract

The objective of this study was to investigate physiological responses in Thai rice (Oryza sativa L. subsp. indica) varieties. Two Thai rice varieties (Homjan and Pathumthani 1), three NaCl concentrations (0, 171, 342 mM) and three salt exposure times (2, 4, 8 days) were designed in a 2×3×3 Factorial in Completely Randomized Design (CRD) with 4 replications. This study showed that the root and leaf osmotic potential in HJ and PT1 seedlings were severely reduced when NaCl concentration and salt exposure time were increased. The photosynthetic pigment concentrations and chlorophyll a fluorescence parameters were significantly decreased with increasing the salt stress treatment and salt exposure time. Moreover, these results exhibited that the decrease in photosynthetic pigment concentrations and chlorophyll a fluorescence parameters in PT1 salt-stressed seedlings were higher than that in HJ salt-stressed seedlings. The reduction of photosynthetic pigment concentrations and chlorophyll a fluorescence parameters in both HJ and PT1 salt-stressed seedlings resulted in the growth reduction. These results demonstrated that the differences of physiological responses in rice may be further used in identifying salt tolerance ability in Thai rice.


Keywords: Salt stress, osmotic potential, photosynthesis, pigments, rice


Email: [email protected]


 

Article Details

Section
Short Communications

References

[1] Khush, G.S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59: 1-6.
[2] Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444: 139-158.
[3] Yokoi, S., R.A. Bressan and P.M. Hasegawa. 2002. Salt stress tolerance of plants. JIRCAS Working Report, pp. 25-33.
[4] Flowers, T.J. and A.R. Yeo. 1995. Breeding for salinity resistance in crop plants: where next?. Aust. J. Plant Physiol. 22: 875-884.
[5] Allakhverdiev, S.I., A. Sakamoto, Y. Nishiyama, M. Inaba and N. Murata. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 123: 1047-1056.
[6] Zhang, G.Y., Y. Guo, S.L. Chen and S.Y. Chen. 1995. RFLP tagging of a salt tolerance gene in rice. Plant Sci. 110: 227-34.
[7] Binzel, M.L. and M. Reuveni. 1994. Cellular mechanism of salt tolerance in plant cells. Hort. Rev. 16: 33-70.
[8] Shannon, M.C., J.D. Rhoades, J.H. Draper, S.C. Scardaci and M.D. Spyres. 1998. Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Sci. 38: 394-398.
[9] Zeng, L. and M.C. Shannon. 2000. Salinity effects on seedling growth and yield components of rice. Crop Sci. 40: 996-1003.
[10] Khan, M.A. and Z. Abdullah. 2003. Salinity-sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions. Environ. Exp. Bot. 49: 145-157.
[11] Zeng, L., S.M. Lesch and C.M. Grieve. 2003. Rice growth and yield respond to changes in water depth and salinity stress. Agr. Water Manage. 59: 67-75.
[12] Morsy, M.R., L. Jouve, J.F. Hausman, L. Hoffmann and J. McD. Stewart. 2007. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J. Plant Physiol. 164: 157-167.
[13] Cha-um, S., K. Supaibulwatana and C. Kirdmanee. 2007a. Glycinebetaine accumulation, physiological characterizations and growth efficiency in salt-tolerant and salt-sensitive lines of indica rice (Oryza sativa L. ssp. indica) in response to salt stress. J. Agron. Crop Sci. 193: 157-166.
[14] Dionisio-Sese, M.L. and S. Tobita. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1-9.
[15] Khelil, A., T. Menu and B. Ricard. 2007. Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiol. Biochem. 45: 551-559.
[16] Taiz, L. and E. Zeiger. 2002. Plant Physiology. 3rd ed. Sinauer Associate, Inc. Publisher, Massachusetts, USA, 690 p.
[17] da Silva, E.C., R.J.M.C. Nogueira, F.P. de Araújo, N.F. de Melo and A.D. de Azevedo Neto. 2008. Physiological responses to salt stress in young umbu plants. Environ. Exp. Bot. 63: 147-157.
[18] Zheng, Y., Z. Wang, X. Sun, A. Jia, G. Jiang and Z. Li. 2008. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environ. Exp. Bot. 62: 129-138.
[19] Yasar, F., O. Uzal, S. Tufenkci and K. Yildiz. 2006. Ion accumulation in different organs of green bean genotypes grown under salt stress. Plant Soil Environ. 52: 476-480.
[20] Hu, Y., Z. Burucs, S. von Tucher and U. Schmidhalter. 2007. Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ. Exp. Bot. 60: 268-275.
[21] Aziz, I. and M.A. Khan. 2001. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat. Bot. 70: 259-268.
[22] Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199: 361-376.
[23] Parida, A.K. and A.B. Das. 2005. Salt tolerance and salinity effects on plant: a review. Ecotox. Environ. Safe. 60: 324-349.
[24] Hasegawa, P.M., R.A. Bressan, J.K. Zhu and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499.
[25] Noreen, S. and M. Ashraf. 2008. Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pak. J. Bot. 40: 1657-1663.
[26] Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51: 659-668.
[27] Gray, G.R., L.P. Chauvin, F. Sarhan and N.P.A. Huner. 1997. Cold acclimation and freezing tolerance (A complex interaction of light and temperature). Plant Physiol. 114: 467-474.
[28] Demiral, T. and I. Türkan. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in root of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53: 247-257.
[29] Pinheiro, H.A., J.V. Silva, L. Endres, V.M. Ferreira, C.de Albuquerque Câmara, F.F. Cabral, J.F. Oliveira, L.W.T. de Carvalho, J.M. dos Santos and B.G. dos Santos Filho. 2008. Leaf gas exchange, chloroplast pigments and dry matter accumulation in castor bean (Rinicus communis L) seedlings subjectedto salt stress conditions. Ind. Crop. Prod. 27: 385-392.
[30] Neocleous, D. and M. Vasilakakis. 2007. Effects of NaCl stress on red raspberry (Rubus idaeus L.‘Autumn Bliss’). Sci. Hortic. (Amsterdam) 112: 282-289.
[31] Santos, C.V. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. (Amsterdam) 103: 93-99.
[32] López-Climent, M.F., V. Arbona, R.M. Pérez-Clemente and A. Gómez-Cadenas. 2008. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ. Exp. Bot. 62: 176-184.
[33] Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
[34] Lanfermeijer, F.C., J.W. Koerselman-Kooij and A.C. Borstlap. 1991. Osmosensitivity of sucrose uptake by immature pea cotyledons disappears during development. Plant Physiol. 95: 832-838.
[35] Kozai, T., K. Fujiwara and I. Watanabe. 1986. Relation between the culture medium composition and water potential of liquid culture media. J. Agric. Meteorol. 42: 1-6.
[36] Shabala, S.N., S.I. Shabala, A.I. Martynenko, O. Babourina and I.A. Newman. 1998. Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust. J. Plant Physiol. 25: 609-616.
[37] Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-380.
[38] Loggini, B., A. Scartazza, E. Brugnoli and F. Navari-Izzo. 1999. Antioxidant defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 119: 1091-1099.
[39] de Azevedo Neto, A.D., J.T. Prisco, J. Enéas-Filho, C.F. de Lacerda, J.V. Silva, P.H.A. da Costa and E. Gomes-Filho. 2004. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz. J. Plant Physiol. 16: 31-34.
[40] Cha-um, S., P. Vejchasarn and C. Kirdmanee.2007b. An effective defensive response in Thai aromatic rice varieties (Oryza sativa L. spp. indica) to salinity. J. Crop Sci. Biotechnol. 10: 257-264.
[41] Nakamura, I., S. Murayama, S. Tobita, B. Ba Bong, S. Yanagihara, Y. Ishimine and Y. Kawamitsu. 2002. Effect of NaCl on the photosynthesis, water relations and free proline accumulation in the wild Oryza species. Plant Prod. Sci. 5: 305-310.
[42] de Herralde, F., C. Biel, R. Savé, M.A. Morales, A. Torrecillas, J.J. Alarcón and M.J. Sánchez-Blanco. 1998. Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Sci. 139: 9-17.
[43] Ahmad, M.S.A., F. Javed and M. Ashraf. 2007. Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regul. 53: 53-63.
[44] Cha-um, S., N.T.H. Nhung and C. Kirdmanee. 2010a. Effect of mannitol-and salt-induced iso-osmotic stress on proline accumulation, photosynthetic abilities and growth characters of rice cultivars (Oryza sativa L. spp. indica). Pak. J. Bot. 42: 927-941.
[45] Musacchi et al., 2006 Musacchi, S., M. Quartieri and M. Tagliavini. 2006. Pear (Pyrus communis) and quince (Cydonia oblonga) roots exhibit different ability to prevent sodium and chloride uptake when irrigated with saline water. Eur. J. Agron. 24: 268-275.
[46] Giaveno, C.D., R.V. Ribiero, G.M. Souza and R.F. de Oliveira. 2007. Screening of tropical maize for salt stress tolerance. Crop Breed. Appl. Biotechnol. 7: 304-313.
[47] Lefèvre, I., E. Gratia and S. Lutts. 2001. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci. 161: 943-952.
[48] Cha-um, S., T. Boriboonkaset, A. Pichakum and C. Kirdmanee. 2009a. Multivariate physiological indices for salt tolerance classification in indica rice (Oryza sativa L. Spp. indica). Gen. App. Plant Physiol. 35: 75-87.
[49] Chen, Z., T.A. Cuin, M. Zhou, A. Twomey, B.P. Naidu and S. Shabala. 2007. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J. Exp. Bot. 58: 4245-4255.
[50] Chen, H.X., W.J. Li, S.Z. An and H.Y. Gao. 2004. Characterization of PSII photochemistry and thermostability in salt treated Rumex leaves. J. Plant Physiol. 161: 257-264.
[51] Siddiqi, E.H. and M. Ashraf. 2008. Can leaf water relation parameters be used as selection criteria for salt tolerance in safflower (Carthamus tinctorius L.). Pak. J. Bot. 40: 221-228.
[52] Boriboonkaset (2007) Boriboonkaset, T. 2007. Multivariate Physiological Responses of Indica Rice (Oryza sativa L. spp. indica) to Salt Stress as Effective Indices for Salt-Tolerant Screening. M.Sc. Thesis, Mahidol University.
[53] Wanichananan et al. (2003) Wanichananan, P., C. Kirdmaneea and C. Vutiyano. 2003. Effect of salinity on biochemical and physiological characteristics in correlation to selection of salt-tolerance in aromatic rice (Oryza sativa L.). ScienceAsia 29: 333-339.
[54] Kauser, R., H.U.R. Athar and M. Ashraf. 2006. Chlorophyll fluorescence: a potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.). Pak. J. Bot. 38: 1501-1509.
[55] Iyengar, E.R.R. and M.P. Reddy. 1996. pp. 56–65. In Pesserkali, M., Ed. Photosynthesis in high salt-tolerant plants. Hand Book of Photosynthesis. Marshal Dekar, Baten Rose, USA,
[56] Taffouo, V.D., A.H. Nouck, S.D. Dibong and A. Amougou. 2010. Effects of salinity stress on seedlings growth, mineral nutrients and total chlorophyll of some tomato (Lycopersicum esculentum L.) cultivars. Afr. J. Biotechnol. 9: 5366-5372.
[57] Cha-um, S., C. Kirdmanee and K. Supaibulwatana. 2004. Biochemical and physiological responses of Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105) to salt stress. ScienceAsia 30: 247-253.
[58] Loreto et al., 2003 Loreto, F., M. Centritto and K. Chartzoulakis. 2003. Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ. 26: 595-601.
[59] Greaves, J.A. and J.M. Wilson. 1987. Assessment of the frost sensitivity of wild and cultivated potato species by chlorophyll fluorescence analysis. Potato Res. 30: 381-395.
[60] Liu, X. and B. Huang. 2000. Heat stress injury of creeping bentgrass in relation to membrane lipid peroxidation. Crop Sci. 40: 503-510.
[61] Wang, Z. and B. Huang. 2004. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci. 44: 1729-1736.
[62] Drozak and Romanowska, 2006 Drozak, A. and E. Romanowska. 2006. Acclimation of mesophyll and bundle sheath chloroplasts of maize to different irradiances during growth. Biochim. Biophys. Acta 1757: 1539-1546.
[63] Panda et al., 2008 Panda, D., S.G. Sharma and R.K. Sarkar. 2008. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquat. Bot. 88: 127-133.
[64] Cha-um, S. and C. Kirdmanee. 2008. Assessment of salt tolerance in Eucalyptus, Rain Tree and Thai Neem under laboratory and the field conditions. Pak. J. Bot. 40: 2041-2051.
[65] Cha-um, S. and C. Kirdmanee. 2009. Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and water-deficit stress. Agricultural Sciences in China 8: 51-58.
[66] Mehta et al., 2010 Mehta, P., A. Jajoo, S. Mathur and S. Bharti. 2010. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol. Biochem. 48: 16-20.
[67] Havaux, M. 1993. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci. 94: 19-33.
[68] Wen et al., 2005 Wen, X., H. Gong and C. Lu. 2005. Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis. Plant Sci. 168: 1471-1476.
[69] Murata, N., S. Takahashi, Y. Nishiyama and S.I. Allakhverdiev. 2007. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta 1767: 414-421.
[70] Jiminez, M.S., A.M. Gonzalez-Rodriguez, D. Morales, M.C. Cid, A.R. Socorro and M. Caballero. 1997. Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses. Photosynthetica 33: 291-301.
[71] de Lacerda et al., 2003 de Lacerda, C.F., J. Cambraia, M.A. Oliva and H.A. Ruiz. 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ. Exp. Bot. 54: 69-76.
[72] Ranjbarfordoei, A., R. Samson and P. Van Damme. 2006. Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica 44: 513-522.
[73] Stępień, P. and G. Klobus. 2006. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant. 50: 610-616.
[74] Degl’Innocenti, E., L. Guidi, B. Stevanovic and F. Navari. 2008. CO2 fixation and chlorophyll a fluorescence in leaves of Ramonda serbica during a dehydration-rehydration cycle. J. Plant Physiol. 165: 723-733.
[75] Degl’Innocenti, E., C. Hafsi, L. Guidi and F. Navari-Izzo. 2009. The effect of salinity on photosynthetic activity in potassium-deficient barley species. J. Plant Physiol. 166: 1968-1981.
[76] Cha-um, S., M. Ashraf and C. Kirdmanee. 2010b. Screening upland rice (Oryza sativa L. ssp. indica) genotypes for salt-tolerance using multivariate cluster analysis. Afr. J. Biotechnol. 9: 4731-4740.
[77] Almodares, A., M.R. Hadi and B. Dosti. 2008b. The effects of salt stress on growth parameters and carbohydrates contents in sweet sorghum. Res. J. Environ. Sci. 2: 298-304.
[78] Chookhampaeng, S., W. Pattanagul and P. Theerakulpisut. 2008. Effects of salinity on growth, activity of antioxidant enzymes and sucrose content in tomato (Lycopersicon esculentum Mill.) at the reproductive stage. ScienceAsia 34: 69-75.
[79] Ashraf, M. and S. Ahmad. 2000. Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crop. Res. 66: 115-127.
[80] Prado, F.E., C. Boero, M. Gallardo and J.A. González. 2000. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds. Bot. Bull. Acad. Sin. 41: 27-34.