Antimicrobial Activity of Edible Electrospun Chitosan/Cellulose Acetate/Gelatin Hybrid Nanofiber Mats Incorporating Eugenol
Main Article Content
Abstract
Keywords: antimicrobial nanofibers; electrospinning; edible electrospun; eugenol; chitosan
*Corresponding author: Tel.: +66850640161 Fax: +6625644486
E-mail: rtepsorn@tu.ac.th
Article Details
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Centers for Disease Control and Prevention, 2013. An Atlas of Salmonella in the United States, 1968-2011: Laboratory-based Enteric Disease Surveillance. Atlanta, Georgia: US Department of Health and Human Services, CDC.
Amna, T., Yang, J., Ryu, K.S. and Hwang, I.H., 2015. Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products. Journal Food Science Technology, 52(7), 4600-4606.
Ercoli, L., Gallina, S., Nia, Y., Auvray, F., Primavilla, S., Guidi, F., Pierucci, B., Graziotti, C., Decastelli, L. and Scuota, S., 2017. Investigation of a Staphylococcal food poisoning outbreak from a Chantilly cream dessert, in Umbria (Italy). Foodborne Pathogens and Disease, 14(7), 407-413.
Devi, K.P., Nisha, S.A., Sakthivel, R. and Pandian, S.K., 2010. Eugenol (an essential oil of clove) acts an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130, 107-115.
Kadariya, J., Smith, T.C. and Thapaliya, D., 2014. Staphylococcus aureus and Staphylococcal food-borne disease: An ongoing challenge in public health. BioMed Research International, 2014, 1-9. http://dx.doi.org/10.1155/2014/827965
Hennekinne, J.A., Buyser, M.L.D. and Dragacci, S., 2012. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews, 36, 815-836.
Appenendini, P.and Hotchkiss, J.H., 2002. Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3, 113-126.
Sung, S.Y., Sin, L.T., Tee, T.T., Bee, S.T., Rahmat, A.R., Rahman, W.A.W.A., Tan, A.C. and Vikkraman, M., 2013. Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33, 110-123.
Wen, P., Zhu, D.H., Wu, H., Zong, M.H., Jing, Y.R. and Han, S.Y., 2016. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 59, 366-376.
Kriegel, C., Kit, K.M., McClements, D.J. and Weiss, J., 2009. Nanofibers as carrier systems for antimicrobial microemulsions. Part I: Fabrication and characterization. Langmuir, 25, 1154-1161.
Bhardwaj, N. and Kundu, S.C., 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28, 325-347.
Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A.S. and Damerchely, R. 2012. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. Journal of Engineered Fibers and Fabrics, 7, 42- 49.
Zong, X., Kim, K., Fang, D. and Ran, S., 2002. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43, 4403-4412.
Oraby, M.A., Waley, A.I., El-Dewany, A.I., Saad, E.A. and Abd El-Hady, B.M., 2013. Electrospun gelatin nanofibers: Effect of gelatin concentration on morphology and fiber diameters. Journal of Applied Sciences Research, 9, 534-540.
Rieger, K.A. and Schiffman, J.D., 2014. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydrate Polymers, 113, 561-568
Pelipenko, J., Kristl, J., Jankovic, B., Baumgartner, S. and Kocbek, P., 2013. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 456, 125-134.
Rogina, A., 2014. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Applied Surface Science, 296, 221-230.
Baji, A., Mai, Y.W., Wong, S.C., Abtahi, M. and Chen, P., 2010. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70, 703-718.
Frenot, A. and Chronakis, I.S., 2003. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science, 8, 64-75.
Sener, A.G., Altay, A.S. and Altay, F., 2011. Effect of voltage on morphology of electrospun nanofibers. Electrical and Electronics Engineering (ELECO) 7th International Conference, Bursa, Turkey, December 1- 4, 2011, P. I-324-I-328.
Elsabee, M.Z., Naguib, H.F. and Morsi, R.E., 2012. Chitosan based nanofibers, review. Materials Science and Engineering C, 32, 1711-1726.
Mendes, A.C., Stephansen, K. and Chronakis, I.S., 2017. Electrospinning of food proteins and polysaccharides. Food Hydrocolloids, 68, 53-68.
Geng, X., Kwon, O.H. and Jang, J., 2005. Electrospinnping of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26, 5427-5432.
Arkoun, M., Daigle, F., Heuzey, M.C. and Ajji, A., 2017. Antibacterial electrospun chitosan-based nanofibers: A bacterial membrane perforator. Food Science and Nutrition, 5, 865-874.
Jafari, J., Emami, S.H., Samadikuchaksaraei, A., Bahar, M.A. and Gorjipour, F., 2011. Electrospun chitosan-gelatin nanofiberous scaffold: Fabrication and in vitro evaluation. Bio-Medical Materials and Engineering, 21, 99-112.
Huang, Z.M., Zhang, Y.Z., Ramakrishna, S. and Lim, C.T., 2004. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer, 45, 5361-5368.
Haider, S., Al-Massry, W.A., Bukhari, N. and Javid, M., 2010. Preparation of the chitosan containing nanofibers by electrospinning chitosan-gelatin complexes. Polymer Engineering and Science, 50, 1887-1893.
Han, S.O., Youk, J.H., Min, K.D., Kang, Y.O. and Park, W.H., 2008. Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Material Letters, 62, 759-762.
Unnithan, A.R., Gnanasekaran, G., Sathishkumar, Y., Lee, Y.S. and Kim, C.S., 2014. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydrate Polymer, 102, 884-892.
Wang, S., Marcone, M.F., Barbut, S. and Lim, L.T., 2013. Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts. Food Research International, 52, 467-472.
Blanco-Padilla, A., Soto, K.M., Iturriaga, M.H. and Mendoza, S., 2014. Food antimicrobials nanocarriers. The Scientific World Journal, 2014, 1-11.
Li, Z., Zhou, P., Zhou, F., Zhao, Y., Ren, L. and Yuan, X., 2018. Antimicrobial eugenol-loaded electrospun membranes of poly(Ɛ-caprolactone)/gelatin incorporated with REDV for vascular graft applications. Colloids and Surfaces B: Biointerfaces, 162, 335-344.
Oussalah, M., Caillet, S., Saucier, L. and Lacroix, M., 2007. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18, 414-420.
Bevilacqua, A., CorBo, M.R. and Sinigaglia, M., 2010. In vitro evaluation of the antimicrobial activity of eugenol, limonene, and citrus extract against bacteria and yeasts, representative of the spoiling microflora of fruit juices. Journal of Food Protection, 73(5), 888-894.
Wang, X., Yue, T. and Lee, T.C., 2015. Development of Pleurocidin-poly (vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application. Food Control, 54, 150-157.
Wen, P., Zhu, D.H., Feng, K., Liu, K.F., Lou, W.Y., Li, N., Zong, M.H. and Wu, H., 2016. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 196, 996-1004.
Somsap, J., Kanjanapongkul, K. and Tepsorn, R., 2018. Effect of parameters on the morphology and fibre diameters of edible electrospun chitosan-cellulose acetate-gelatin hybrid nanofibers. MATEC Web of Conferences, 192, 03038. https://doi.org/10.1051/matecconf/ 201819203038
ASTM E2149-01, 2004. Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents under Dynamic Contact Conditions. American Society for Testing and Materials.
Tepsorn, R. and Somsap, J. 2018. Morphology of edible nanofibers based chitosan-cellulose acetate-gelatin blend fortified with eugenol by electrospinning and electrospinning-spraying technique. Thai Science and Technology Journal, 26(7), 1130-1140.
Angammana, C.J. and Jayaram, S.H., 2011. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Transactions on Industry Applications, 47, 1109-1117.
de Oliveria Mori, C.L.S., dos Passos, N.A., Oliveira, J.E., Altoé, T.F., Mori, F.A., Mattoso, L.H.C., Scolforo, J.R. and Tonoli, G.H.D., 2015. Nanostructured polylactic acid/candeia essential oil mats obtained by electrospinning. Journal of Nanomaterials, 2015, 1-9. http:// dx.doi.org/10.1155/2015/439253
Gao, Y., Truong, Y.B., Zhu, Y. and Kyratzis, I.L., 2014. Electrospun antibacterial nanofibers: Production, activity, and In vivo application. Journal of Applied Polymer Science, 2014, 1-13. doi:10.1002/app.40797
Peppas, N.A., Bures, P., Leobandung, W. and Ichikawa, H., 2000. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50, 27-46.
Kabay, G., Meydan, A.E., Can, G.K., Demirci, C. and Mutlu, M., 2017. Controlled release of a hydrophilic drug from electrospun amyloid-like protein blend nanofibers. Materials Science & Engineering C, 81, 271-279.
Varma, M.V.S., Kaushal, A.M., Garg, A. and Garg, S., 2004. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. American Journal of Drug Delivery, 2(1), 43-57.
Huang, X. and Brazel, C.S., 2001. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 73, 121-136.
Bennis, S., Chami, F., Chami, N., Rhayour, K., Tantaoui-Elaraki, A. and Remmal, A., 2004. Eugenol induces damage of bacterial and fungal envelope. Moroccan Journal of Biology, 1, 33-39.
Burt, S., 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94, 223-253.
Marchese, A., Barbieri, R., Coppo, E., Orhan, I.E., Daglia, M., Nabavi, S.F., Izadi, M., Abdollahi, M., Nabavi, S.M. and Ajami, M., 2017. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Critical Reviews in Microbiology, 43(6), 668-689.
Cooper, A., Oldinski, R., Ma, H., Bryers, J.D. and Zhang, M., 2013. Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydrate Polymers, 92, 254-259.