Semi-field Application of a New Formulation Based on Spodoptera litura Nuclear Polyhedrosis Virus and Bacillus thuringiensis subsp. mexicanensis Against Cotton Leaf Worm, Spodoptera littoralis and Root Knot Nematode, Meloidogyne incognita in Egypt

Main Article Content

Hanan Alfy*
Rehab Y. Ghareeb
Wesam Z. Aziz

Abstract

In this study, new biopreparations based on Spodoptera litura nuclear polyhedrosis virus (SlituraNPV) and Bacillus thuringiensis subsp. mexicanensis (Btm) were evaluated against two important pests: cotton leaf worm, Spodoptera littoralis, and the root knot nematode, Meloidogyne incognita, in 2017 and 2018. The mortality of treated S. littoralis larvae occurred, with combination treatments of SlituraNPV and Btm at two concentrations (20 and 30%), without significant differences between the two tested concentrations (87.9 and 94.0, respectively). Deformities among pupae were the highest in Btm treatments, followed by SlituraNPV treatments, then the fewest deformed pupae were recorded in the combined treatment. Increases of the soybean mean seed weights were highly significant with combined treatment when compared to the controls, in both years, and the greatest expansion was seen with combination treatment. The treatment of M. incognita with Btm was highly effective for nematode J2-mortality. Furthermore, the mean numbers of all recorded parameters for tomato showed significant differences.


 


Keywords: nuclear polyhedrosis virus; bacteria; cotton leaf worm; nematode; field application


*Corresponding author: Tel.: (+20) 1229257322


                                             E-mail: alfyhanan@gmail.com

Article Details

Section
Original Research Articles

References

Hosny, M.M. Topper, C.P., Moawad, G.M. and El-Saadany, G.B., 1986. Economic damage threshold of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) on cotton in Egypt. Crop Protection, 5(2), 100-104.

Hafez, M. and Hassan, S.M., 1969. On the correct identity of the Egyptian cotton leafworm (Lepidoptera: Noctuidae). Bulletin de la Société Entomologique d'Égypte, 53, 63-68.

Brown, E.S. and Dewhurst, C.F., 1975. The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bulletin of Entomological Research, 65, 221-265.

Hegazi, E.M. and Schopf, A., 1984. The influence of temperature on consumption and utilization of artificial diet by Spodoptera littoralis (Boisd.) (Lepidoptera., Noctuidae). Journal of Applied Entomology, 97, 321-326.

Temerak, S.A., 2002. Historical records of cotton leafworm (Spodoptera littoralis) resistance to conventional insecticides in the field as influenced by the resistance programs in Egypt from 1950-2002. Resistant Pest Management Newsletter, 12(1), 7-10.

El-Sheikh, T.A.A., 2012. Biological, biochemical and histological effects of spinosad, Bacillus thuringiensis var. kurstaki and cypermethrin on the cotton leaf worm, Spodoptera littoralis (Boisd.). Egyptian Academic Journal of Biological Sciences, 4, 113-124.

El-Geddawy, A.M.H., Ahmed, M.A.I. and Mohamed, S.H., 2014. Toxicological evaluation of selected biopesticides and one essential oil in comparison with Indoxacarb pesticide on cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) under laboratory conditions. American Eurasian Journal of Sustainable Agriculture, 8(2), 58-64.

Ahmed, M.A.I., Abdel-Galil, F.A., Temerak S.A.S. and Manna, S.H.M., 2015. Bio-residual activity of selected biopesticides in comparison with the conventional insecticide Dursban against cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). American-Eurasian Journal of Sustainable Agriculture, 9(1), 9-13.

Ahmed, M.A.I., Temerak, S.A.S., Abdel-Galil, F.A. and Manna, S.H.M., 2015. The effect of selected host plants on the efficacy of Spinosad pesticide on cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) under laboratory conditions. Advances in Environmental Biology, 9, 372-375.

Plowright, R. and Bridge, J., 1990. Effects of Meloidogyne graminicola (Nematoda) on the establishment; growth and yield of rice cv IR36. Nematologica, 36, 81-89.

Karssen, G., Wesemael, W.M.L. and Moens, M., 2013. Root-knot nematodes. In: R.N. Perry and M. Moens, eds. Plant Nematology. Wallingford: CABI, pp.73-108.

Castillo, P., Vovlas, N., Subbotin, S. and Troccoli, A., 2003. A new root-knot nematode, Meloidogyne baetican. sp (Nematoda: Heteroderidae), parasitizing wild olive in Southern Spain. Phytopathology, 93(9), 1093-1102.

Mukhtar, T. and Kayani, M.Z., 2019. Growth and yield responses of fifteen cucumber cultivars to root-knot nematode (Meloidogyne incognita). Acta Scientiarum Pollonorum Hortorum Cultus, 18(3), 45-52.

Bridge, J., Luc, M. and Plowright, R.A., 1990. Nematode parasites of rice. In: M. Lue, R.A. Sikora and J. Bridge, eds. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Wallington: CABI, pp. 69-108.

Brader, L., 1979. Integrated pest control in the developing world. Annual Review of Entomology, 24, 225-254.

Ahmed, M.A.I, 2014. Evaluation of novel neonicotinoid pesticides against cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) under laboratory conditions. Advances in Environmental Biology, 8, 1002-1007.

Marrone, P.G., 2019. Pesticidal natural products-status and future potential. Pest Management Science, 75(9), 2325-2340.

Gómez, I., Rodríguez-Chamorro, D.E., Flores-Ramírez, G., Grande, R., Zúñiga, F., Portugal, F.J., Sánchez, J., Pacheco, S., Bravo, A. and Soberón, M., 2018. Spodoptera frugiperda (J.E. Smith) aminopeptidase N1 is a functional receptor of the Bacillus thuringiensis Cry1Ca toxin. Applied and Environmental Microbiology, 84(17), e01089-18, https://doi.org/10.1128/ AEM.01089-184

Branscome, D.D., Storey, R.D., Eldridge, J.R., Brazil, E.E. and Valent BioSciences LLC, 2018. Synergistic Bacillus thuringiensis subsp. aizawai, Bacillus thuringiensis subsp. kurstaki and Cyantraniliprole Mixtures for Diamondback Moth, Beet Armyworm, Southwestern Corn Borer, and Corn Earworm. U.S. Pat. 9, 968, 098.

Branscome, D.D., Storey, R.D., Eldridge, J.R., Brazil, E.E. and Valent BioSciences LLC, 2019. Synergistic Bacillus thuringiensis subsp. kurstaki and Cyantraniliprole Mixtures for Diamondback Moth, Beet Armyworm, Sugarcane Borer, and Soybean Looper Control. U.S. Pat. 10, 278, 396.

Yang, F., González, J.C.S., Williams, J., Cook, D.C. Gilreath, R.T. and Kerns, D., 2019. Occurrence and ear damage of Helicoverpa zea on transgenic Bacillus thuringiensis maize in the field in Texas, US and its susceptibility to Vip3A protein. Toxins, 11(2), 102, https://doi: 10.3390/toxins11020102

Racke, J. and Sikora, R.A., 1992. Influence of the plant health-promoting rhizobacteria Agrobacterium radiobacter and Bacillus sphaericus on Globodera pallida root infection of potato and subsequent plant growth. Journal of Phytopathology, 134(3), 198-208.

Devidas, P. and Rehberger, L.A., 1992. The effects of exotoxin (thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant and Soil, 145(1), 115-120.

Ravari, S.B. and Moghaddam, E.M., 2015. Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica. Plant Protection Science, 51(1), 46-51.

Rohrmann, G.F., 2013. Baculovirus Molecular Biology. Bethesda: National Center for Biotechnology Information.

El-Salamouny, S., Lange, M., Jutzi, M., Huber, J. and Jehle, J.A., 2003. Comparative study on the susceptibility of cutworms (Lepidoptera: Noctuidae) to Agrotis segetum nucleopolyhedrovirus and Agrotis ipsilon nucleopolyhedrovirus. Journal of Invertebrate Pathology, 84(2), 75-82.

Alfy, H. 2014. Microbial Control of Certain Insect Pests of Field Crops. Ph.D. University of Alexandria.

Senthil-Nathan, S., 2015. A review of biopesticides and their mode of action against insect pests. In: P. Thangavel and G. Sridevi, eds. Environmental Sustainability. New Delhi: Springer, pp. 49-63.

Alfazairy, A.A., El-Ahwany, A.M., Mohamed, E.A., Zaghloul, H.A. and El-Helow, E.R., 2013. Microbial control of the cotton leafworm Spodoptera littoralis (Boisd.) by Egyptian Bacillus thuringiensis isolates. Folia Microbiologica, 58(2), 155-162.

Okuno, S., Takatsuka, J., Nakai, M., Ototake, S., Masui, A., Kunimi, Y. 2003. Viral-enhancing activity of various stilbene-derived brighteners for a Spodoptera litura (Lepidoptera: Noctuidae) nucleopoly hedrovirus. Biological Control, 26, 146-152.

de Moraes, R.R. and Maruniak, J.E., 1997. Detection and identification of multiple baculoviruses using the polymerase chain reaction (PCR) and restriction endonuclease analysis. Journal of Virological Methods, 63(1-2), 209-217.

Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.

Hussey, R.S., 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Report, 57, 1025-1028.

Ayoub, S.M., 1980. Plant Nematology: An Agricultural Training Aid. (Revised). California: NemaAid Publication.

Çakici, F.Ö., Sevim, A., Demirbag, Z. and Demir, I., 2014. Investigating internal bacteria of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) larvae and some Bacillus strains as biocontrol agents. Turkish Journal of Agriculture and Forestry, 38(1), 99-110.

Da Silva, K.F., Spencer, T.A., Crespo, A.L.B. and Siegfried, B.D., 2016. Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) field populations to the Cry1F Bacillus thuringiensis insecticidal protein. Florida Entomologist, 99(4), 629-633.

Nathan, S.S., Kalaivani, K. and Murugan, K., 2006. Behavioural responses and changes in biology of rice leaffolder following treatment with a combination of bacterial toxin and botanical pesticides. Chemosphere, 64(10), 1650-1658.

Sarker, N. and Mahbub, K.R., 2012. Bacillus thuringiensis: An environment friendly microbial control agent. Microbiology Journal, 2(2), 36-51.

Konecka, E., Kaznowski, A., Stachowiak, M. and Maciąg, M., 2018. Activity of spore-crystal mixtures of new Bacillus thuringiensis strains against Dendrolimus pini (Lepidoptera: Lasiocampidae) and Spodoptera exigua (Lepidoptera: Noctuidae). Folia Forestalia Polonica, 60(2), 91-98.

Abad, A.R., Dong, H., Lo, S.B., Shi, X. and Wolfe, T.C., Pioneer Hi-Bred International Inc, 2018. Bacillus thuringiensis gene with lepidopteran activity. U.S. Pat. 10/000, 769.

Eroglu, G.B., Demir, I. and Demirbag, Z., 2018. A novel alphabaculovirus isolated from the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae): characterization and pathogenicity. Biologia, 73(5), 545-551.

Raghunandan, B.L., Patel, N.M., Dave, H.J. and Mehta, D.M., 2019. Natural occurrence of nucleopolyhedrovirus infecting fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in Gujarat, India. Journal of Entomology and Zoology Studies, 7(2), 1040-1043.

Luna-Espino, J.C., Castrejón-Gómez, V.R., Pineda, S., Figueroa, J.I. and Martínez, A.M., 2018. Effect of four multiple nucleopolyhedrovirus isolates on the larval mortality and development of Spodoptera exigua (Lepidoptera: Noctuidae): determination of virus production and mean time to death. Florida Entomologist, 101(2), 153-159.

Mohammed, S.H., El Saedy, M.A., Enan, M.R., Ibrahim, N.E., Ghareeb, A. and Moustafa, S.A., 2008. Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. Journal of Cell and Molecular Biology, 7(1), 57-66.

Ashoub, A.H. and Amara, M.T., 2010. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. Journal of American Science, 6(10), 321-328.

Ismail, A.E. and Fadel, M., 1999. Field application of three local isolates of Bacillus thuringiensis for controlling the citrus nematode, Tylenchus semipenetrans. Egyptian Journal of Biological Pest Control, 9, 21-27.

Dhawan, S.C., Kaur, S. and Singh, A., 2004. Effect of Bacillus thuringiensis on the mortality of root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology, 34(1), 98-99.

Chahal, P.P.K. and Chahal, V.P.S., 1993. Effect of thuricide on the hatching of eggs root-knot nematode, Meloidogyne incognita. Current Nematology, 4, 247.

Zuckerman, B.M., Dicklow, M.B. and Acosta, N., 1993. A strain of Bacillus thuringiensis for the control of plant‐parasitic nematodes. Biocontrol Science and Technology, 3(1), 41-46.

Yamamoto, T. and Powell, G., 1993. Bacillus thuringiensis crystal proteins: recent advances in understanding its insecticidal activity. In: L. Kim, ed. Advanced Engineered Pesticides. New York: Dekker, pp. 3-42.

Fernandes, R.H., Lopes, E.A., Bontempo, A.F., Fuga, C.A.G. and Vieira, B.S., 2018. Bacillus spp. isolates for the control of Meloidogyne incognita in common bean. Científica, 46(3), 235-240.