Electrical Properties of Semiconducting Copper Zinc Sulphide Thin Films

Main Article Content

Joseph Onyeka Emegha*
Bolutife Olofinjana
Kingsley Eghonghon Ukhurebor
Joseph Taye Adegbite
Marcus Adebola Eleruja

Abstract

The electrical properties of metal-organic-chemical-vapour-deposited copper zinc sulphide (Cu-Zn-S) thin films on soda-lime substrates were studied. The films produced were characterized in terms of their electrical properties employing the Four-point probe procedure at a temperature range of 370 to 470oC. The electrical properties (resistivity and conductivity) of the deposited copper zinc sulphide films were systematically studied in terms of the deposition parameters of concentration and deposition temperature. The conductivity was in the interval of 5.48 to 8.0 × 10-1 (Ω.cm)-1. Activation energies of 0.54 and 0.29 eV in the deposition temperature range were estimated. The high resistive property of the films re-emphasized the potential use of these materials as active semiconductors for optoelectronic device applications.


Keywords: copper zinc sulphide; electrical conductivity; thin films; thickness; four-point probes


*Corresponding author: Tel.: +234(0)8068930891


                                          E-mail: jjjemegha@yahoo.com

Downloads

Download data is not yet available.

Article Details

Section
Research Articles

References

[1] Jose, E. and Kumar, M.C.S., 2017. Room temperature deposition of highly crystalline Cu-Zn-S thin films for solar cell applications using SILAR method. Journal of Alloys and Compound, 712, 649-656.
[2] Kitagawa, N., Ito, S., Nguyen, D. and Nishino, H., 2013. Copper zinc sulfur compound solar cells fabrication by spray pyrolysis deposition for solar cells. Natural Resources, (4),142-145.
[3] Emegha, J.O., Damisa, J., Efe, F.O., Olofinjana, B., Eleruja, M.A. and Azi, S.O., 2019. Preparation and characterization of metal organic chemical vapour deposited copper zinc sulphide thin films using single solid source precursors. European Journal of Materials Science and Engineering, 4(1), 11-22.
[4] Emegha, J.O., Okafor, C.M. and Ukhurebor, K.E., 2021. Optical properties of copper-zinc sulphide network from mixed single solid source precursors of copper and zinc dithiocarbamates. Walailak Journal of Science & Technology, 18(9), https://doi.org/10.48048/ wjst.2021.9535.
[5] Alkhayatt, A.H.O., Habieb, A.A.W., Al-Noaman, A.H.A. and Hameed, A.A., 2019. Structure, surface morphology optical properties of CuxZn1-xS/Au NPs layer for photo detector application. Journal of Physics: Conference Series, 1234, 012012, https://doi.org/ 10.1088/1742-6596/1234/1/012012.
[6] Jubimol, J., Sreejith, M.S., Kartha, C.S., Vijayakumar, K.P. and Louis, G., 2018. Analysis of spray pyrolysed Copper zinc sulfide thin film suing photoluminescence, Journal of Luminescence, 203, 436-440.
[7] Emegha, J.O., Olofinjana, B., Eleruja, M.A., Efe, O. and Azi, S.O., 2019. Preparation and physical properties of CuxZn1-xS thin films deposited by metal organic chemical vapour deposition technique. Journal of Materials Science Research and Review, 2(4), 1-9.
[8] Ilori, O.O., Osasona, O., Eleruja, M.A., Egharevba, G.O., Adegboyega, G., Chiodelli Boudreault, G., Heynes, C., Ajayi, E.O.B., 2015. Preparation and characterization of metalorganic chemical vapour deposited LixMoyOz using a single source solid precursor. Ionic, 11, 387-391.
[9] Chandra, N., Sharwa, V. and Chung, G.Y., 2011. Schroder. Four-point probe characterization of 4H Silicon carbide. Solid-State Electronics, 64, 73-77.
[10] Barquinha, P.M.C., 2010. Transparent Oxide Thin-film Transistors; Production, Characterization and Integration. Ph.D. Universidade Nova De Lisboa, Portugal.
[11] Schroder, D.K., 2006. Semiconductor Material and Device Characterization. 3rd ed. New Jersey: John Wiley & Sons.
[12] Herodotou, S., 2015. Zirconium Doped Zinc Oxide Thin Films Deposited by Atomic Layer Deposition. Ph.D. The University of Liverpool, United Kingdom.
[13] Yu-Hsiu, L. 2009. Structure and Properties of Transparent Conductive ZnO Films Grown by Pulsed Laser Deposition (PLD). M.Sc. University of Birmingham, United Kingdom.
[14] Patidar, D., Rathore, K.S., Saxena, N.S., Sharma, K. and Sharma, T.P., 2008. Energy band gap and conductivity measurement of CdSe thin films. Chalcogenide Letters, 5(2), 21-25.
[15] Thirumavalavan, S., Mani, K. and Sagadevan, S., 2015. Investigation of the structural, optical and electrical properties of copper selenide thin films. Materials Research, 18(5), 1000-1007.
[16] Emegha, J.O., Elete, D.E., Efe, F.O. and Adebisi, A.C., 2019. Optical and electrical properties of semiconducting ZnS thin film prepared by chemical bath deposition technique. Journal of Materials Science Research and Reviews, 4(1), 1-8.
[17] Hassanien, A.S. and Akl, A.A., 2016. Effect of Se addition on optical and electrical properties of chalcogenides CdSSe thin films. Superlattices and Microstructures, 89, 153-169.
[18] Rahman, M.M., Khan, M.K.R., Islam, M.R., Halim, M.A., Shahjahan, M., Hakim, M.A., Saha, D.K. and Khan, J.U., 2012. Effect of Al doping on structural, electrical, optical and photoluminescence properties of nano-structural ZnO thin films. Journal of Materials Science andTechnology,28(4), 329-335.
[19] Colak, H., 2015. Influence of Tm2O3 doping on structural and electrical properties of ZnO. Journal of Materials Science, Materials. Electronics, 26(2), 784-790.