A Review on Role of Post-transcriptional Gene Silencing in Crop Improvement
Main Article Content
Abstract
Gene silencing is an important tool for increasing the yield of crops and plays an important role in revolutionizing agriculture. In agriculture, gene silencing is done by post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) technology. RNA interference (RNAi) is a well-known technique of post-transcriptional gene silencing and is widely utilized in crop improvement through gene regulation. In the present review, we discussed various aspects of RNA interference gene silencing viz RNA-dependent RNA polymerase (RdRp), Argonaute proteins (AGOs) and Dicer-like proteins (DCLs) and their applications in the optimization of agricultural yield.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Chen, C., Chaudhary, A. and Mathys, A., 2020. Nutritional and environmental losses embedded in global food waste. Resources, Conservation and Recycling, 160, https://doi.org/10.1016/j.resconrec.2020.104912.
Pandey, P., Mysore, K.S. and Senthil-Kumar, M., 2022. Recent advances in plant gene silencing methods. In: K.S. Mysore and M. Senthil-Kumar, eds. Plant Gene Silencing. Methods in Molecular Biology. Vol. 2408, New York: Humanan, pp. 1-22.
Napoli, C., Lemieux, C. and Jorgensen, R., 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell, 2(4), 279-289.
Ashfaq, M.A., Kumar, V.D., Reddy, P.S.S., Kumar, C.H.A., Kumar, K.S., Rao, N.N., Tarakeswari, M. and Sujatha, M., 2020. Post-transcriptional gene silencing: Basic concepts and applications. Journal of Biosciences, 45, https://doi.org/10.1007/s12038-020-00098-3.
Li, B., Carey, M. and Workman, J.L., 2007. The role of chromatin during transcription. Cell, 128(4), 707-719.
Cogoni, C., Romano, N. and Macino, G., 1994. Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek, 65, 205-209.
Ghildiyal, M. and Zamore, P.D., 2009. Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10(2), 94-108.
Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B. and Vernhettes, S., 1998. Transgene‐induced gene silencing in plants. The Plant Journal, 16(6), 651-659.
Sharp, P.A., 1999. RNAi and double-strand RNA. Genes and Development, 13(2), 139-141.
Ruiz, M.T., Voinnet, O. and Baulcombe, D.C., 1998. Initiation and maintenance of virus-induced gene silencing. The Plant Cell, 10(6), 937-946.
Van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N and Stuitje, A.R., 1990. Flavonoid genes in petunia: The addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant Cell, 2(4), 291-299.
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811.
Ratcliff, F.G., MacFarlane, S.A. and Baulcombe, D.C., 1999. Gene silencing without DNA: RNA-mediated cross-protection between viruses. The Plant Cell, 11(7), 1207-1215.
Muhammad, T., Zhang, F., Zhang, Y. and Liang, Y., 2019. RNA interference: a natural immune system of plants to counteract biotic stressors. Cells, 8(1), https://doi.org/10.3390/cells8010038.
Koeppe, S., Kawchuk, L. and Kalischuk, M., 2023. RNA Interference past and future applications in plants. International Journal of Molecular Sciences, 24(11), https://doi.org/10.3390/ijms24119755.
Younis, A., Siddique, M.I., Kim, C.-K. and Lim, K.-B., 2014. RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. International Journal of Biological Sciences, 10(10), 1150-1158.
Sijen, T., Vijn, I., Rebocho, A., van Blokland, R., Roelofs, D., Mol, J.N. and Kooter, J.M., 2001. Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology, 11(6), 436-440.
Hammond, S.M., Caudy, A.A. and Hannon, G.J., 2001. Post-transcriptional gene silencing by double-stranded RNA. Nature Reviews Genetics, 2(2), 110-119.
Dinh, P.T.Y., Brown, C.R. and Elling, A.A., 2014. RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and potato. Phytopathology, 104(10), 1098-1106.
Ma, S., Song, Q., Tao, H., Harrison, A., Wang, S., Liu, W., Lin, L., Zhang, Z., Ai, Y. and He, H., 2019. Prediction of protein–protein interactions between fungus (Magnaporthe grisea) and rice (Oryza sativa L.). Briefings in Bioinformatics, 20(2), 448-456.
Ravelonandro, M., Scorza, R. and Briard, P., 2019. Innovative RNAi strategies and tactics to tackle Plum Pox Virus (PPV) genome in Prunus domestica-Plum. Plants, 8(12), https://doi.org/10.3390/plants8120565.
Lim, Z.X., Robinson, K.E., Jain, R.G., Chandra, G.S., Asokan, R., Asgari, S. and Mitter, N., 2016. Diet-delivered RNAi in Helicoverpa armigera progresses and challenges. Journal of Insect Physiology, 85, 86-93.
Thakur, N., Upadhyay, S.K., Verma, P.C., Chandrashekar, K., Tuli, R. and Singh, P.K., 2014. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PloS One, 9, https://doi.org/10.1371/journal.pone.0087235.
Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T. and Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25(11), 1322-1326.
Domínguez, A., Guerri, J., Cambra, M., Navarro, L., Moreno, P. and Peña, L., 2000. Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports, 19(4), 427-433.
Walawage, S.L., Leslie, C.A., Escobar, M.A. and Dañdekar, A.M., 2014. Agrobacterium tumefaciens-mediated transformation of walnut (Juglans regia). Bio-protocol, 4(19), https://doi.org/10.21769/BioProtoc.1258.
Williams, E.B. and Kuc, J., 1969. Resistance in malus to Venturia inaequalis. Annual Review of Phytopathology, 7(1), 223-246.
Phylactou, L.A., Kilpatrick, M.W. and Wood, M.J.A., 1998. Ribozymes as therapeutic tools for genetic disease. Human Molecular Genetics, 7(10), 1649-1653.
Shampo, M.A., Kyle, R.A. and Steensma, D.P., 2012. Sidney Altman-Nobel laureate for work with RNA. Mayo Clinic Proceedings, 87(10), https://doi.org/10.1016/j.mayocp.2012.01.022.
Dong, X., Qu, G., Piazza, C.L. and Belfort, M., 2020. Group II intron as cold sensor for self-preservation and bacterial conjugation. Nucleic Acids Research, 48(11), 6198-6209.
Magistri, M., Faghihi, M.A., St Laurent, G. and Wahlestedt, C., 2012. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends in Genetics, 28(8), 389-396.
Saberi, F., Kamali, M., Najafi, A., Yazdanparast, A. and Moghaddam, M.M., 2016. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications. Cellular and Molecular Biology Letters, 21(6), https://doi.org/10.1186/s11658-016-0007-z.
Wahlestedt, C., 2013. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nature Reviews Drug Discovery, 12(6), 433-446.
Larivera, S., Neumeier, J. and Meister, G., 2023. Post-transcriptional gene silencing in a dynamic RNP world. Biological Chemistry, 404(11-12), 1051-1067.
Pelechano, V. and Steinmetz, L.M., 2013. Gene regulation by antisense transcription. Nature Reviews Genetics, 14(12), 880-893.
Wilson, R.C. and Doudna, J.A., 2013. Molecular mechanisms of RNA interference. Annual Review of Biophysics, 42, 217-239.
Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, KD., Lellis, A.D., Zilberman, D., Jacobsen, S.E. and Carrington, J.C., 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biology, 2(5), https://doi.org/10.1371/journal.pbio.0020104.
Carmell, M.A. and Hannon, G.J., 2004. RNase III enzymes and the initiation of gene silencing. Nature Structural and Molecular Biology, 11(3), 214-218.
Margis, R., Fusaro, A.F., Smith, N.A., Curtin, S.J., Watson, J.M., Finnegan, E.J. and Waterhouse, P.M., 2006. The evolution and diversification of Dicers in plants. FEBS letters, 580(10), 2442-2450.
Montavon, T., Kwon, Y., Zimmermann, A., Hammann, P., Vincent, T., Cognat, V., Berydoll, M., Michel, F. and Dunoyer, P., 2018. Characterization of DCL 4 missense alleles provides insights into its ability to process distinct classes of ds RNA substrates. The Plant Journal, 95(2), 204-218.
Kandasamy, S.K. and Fukunaga, R., 2016. Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production. Proceedings of the National Academy of Sciences, 113(49), 14031-14036.
Park, J.-E., Heo, I., Tian, Y., Simanshu, D.K., Chang, H., Jee, D., Patel, D.J. and Kim, V.N., 2011. Dicer recognizes the 5ˈ end of RNA for efficient and accurate processing. Nature, 475(7355), 201-205.
Mallory, A. and Vaucheret, H., 2010. Form, function, and regulation of ARGONAUTE proteins. The Plant Cell, 22(12), 3879-3889.
Parker, J.S., 2010. How to slice: snapshots of Argonaute in action. Silence, 1(1), 1-10.
Simon, B., Kirkpatrick, J.P., Eckhardt, S., Reuter, M., Rocha, E.A., Andrade-Navarro, M.A., Sehr, P., Pillai, R.S. and Carlomagno, T., 2011. Recognition of 2ˈ-O-methylated 3ˈ-end of piRNA by the PAZ domain of a Piwi protein. Structure, 19(2), 172-180.
Schiebel, W., Pélissier, T., Riedel, L., Thalmeir, S., Schiebel, R., Kempe, D., Lottspeich, F., Sänger, H.L. and Wassenegger, M., 1998. Isolation of an RNA-directed RNA polymerase–specific cDNA clone from tomato. The Plant Cell, 10(12), 2087-2101.
Mourrain, P., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Jouette, D., Lacombe, A.M., Nikic, S., Picault, N., Rémoué, K., Sanial, M., Vo, T.A. and Vaucheret, H., 2000. Arabidopsis SGS2 and SGS3 genes are required for post-transcriptional gene silencing and natural virus resistance. Cell, 101(5), 533-542.
Liang, G., He, H., Li, Y. and Yu, D., 2012. A new strategy for the construction of artificial miRNA vectors in Arabidopsis. Planta, 235, 1421-1429.
Schwab, R., Ossowski, S., Riester, M., Warthmann, N. and Weigel, D., 2006. Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell, 18(5), 1121-1133.
Uluisik, S., Chapman, N.H., Smith, R., Poole, M., Adams, G., Gillis, R.B., Besong, T.M.D., Sheldon, J., Stiegelmeyer, S., Perez, L., Samsulrizal, N., Wang, D., Fisk, I.D., Yang, N., Baxter, C., Rickett, D., Fray, R., Blanco-Ulate, B., Powell, A.L.T., Harding, S.E., Craigon, J., Rose, J.K.C., Fich, E.A., Sun, L., Domozych, D.S., Fraser, P.D., Tucker, G.A., Grierson, D. and Seymour, G.B., 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology, 34(9), 950-952.