Bacterial Cellulose Production by Acetobacter aceti MTCC 2623 Using Different Carbon Sources

Main Article Content

Garima Singh
Pammi Gauba
Garima Mathur

Abstract

Cellulose is a naturally occurring polysaccharide that is produced by both plants and micro-organisms.  It is one of the most prevalent organic substances in the natural world. Compared to plant cellulose, bacterial cellulose (BC) exhibits superior physicochemical properties such as high purity, crystallinity, biocompatibility, biodegradability, and water holding ability, making it an excellent choice of material for various industrial and biomedical applications. However, large scale production and utilization of BC suffers from limitations related to its low yield and high production cost. In this research, an attempt was made to investigate the effects of different carbon sources on the bacterial cell growth kinetics, BC yield and physicochemical characteristics of Acetobacter aceti MTCC 2623. The results showed variations in growth kinetics and BC yields under different conditions. Among the selected carbon sources, Hestrin and Schramm (HS) medium supplemented with glucose gave highest BC yield of 2.89±0.18 g/L, whereas glycine resulted in the lowest BC yield, which was 0.089±0.17 g/L. FTIR spectral analysis showed no significant variations in the characteristic vibrational bands for BC prepared using different carbon sources. DSC results indicated the superior thermal stability of BC samples over commercial cellulose. Our findings suggest that BC production by A. aceti using glucose as C-source in HS media may be scaled up for enhanced production of BC. The improved physicochemical characteristics of BC compared to commercial cellulose point to the importance of BC as a potential candidate for several biomedical and industrial applications.

Article Details

Section
Original Research Articles

References

Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L.C., Bacabac, R.G. and Klein-Nulend,

J., 2021. Cellulose and its derivatives: towards biomedical applications. Cellulose, 28(4), 1893-1931, https://doi.org/10.1007/s10570-020-03674-w.

Trache, D., Hussin, M.H., Chuin, C.T.H., Sabar, S., Fazita, M.N., Taiwo, O.F., Hassan, T.M.

and Haafiz, M.M., 2016. Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. International Journal of Biological Macromolecules, 93, 789-804, https://doi.org/10.1016/j.ijbiomac.2016.09.056.

Pandit, A. and Kumar, R., 2021. A review on production, characterization and application of

bacterial cellulose and its biocomposites. Journal of Polymers and the Environment, 29(9), 2738-2755, https://doi.org/10.1007/s10924-021-02079-5.

Phruksaphithak, N., Kaewnun, C. and Sompong, O., 2019. Bacterial cellulose production and applications. Science, Engineering and Health Studies, 13(1), 1-7, https://doi.org/10.14456/sehs.2019.1.

Wang, J., Tavakoli, J. and Tang, Y., 2019. Bacterial cellulose production, properties and applications with different culture methods-A review. Carbohydrate Polymers, 219, 63-76, https://doi.org/10.1016/j.carbpol.2019.05.008.

Srivastava, S. and Mathur, G., 2023. Bacterial cellulose: A multipurpose biomaterial for manmade world. Current Applied Science and Technology, 23(3), https://doi.org/10.55003/cast.2022.03.23.014.

Abol-Fotouh, D., Hassan, M.A., Shokry, H., Roig, A., Azab, M.S. and Kashyout, A.E.-H.B., 2020. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports, 10(1), https://doi.org/10.1038/s41598-020-60315-9.

Chen, X., Yuan, F., Zhang, H., Huang, Y., Yang, J. and Sun, D., 2016. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. Journal of Materials Science, 51, 5573-5588, https://doi.org/10.1007/s10853-016-9899-2.

Deshpande, P., Wankar, S., Mahajan, S., Patil, Y., Rajwade, J. and Kulkarni, A., 2023. Bacterial cellulose: natural biomaterial for medical and environmental applications. Journal of Natural Fibers, 20(2), 2218623, https://doi.org/10.1080/15440478.2023.2218623.

Wang, S.-S., Han, Y.-H., Chen, J.-L., Zhang, D.-C., Shi, X.-X., Ye, Y.-X., Chen, D.-L. and Li, M., 2018. Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polymers, 10(9), https://doi.org/10.3390/polym10090963.

Jung, H.I., Jeong, J.H., Lee, O.-M., Park, G.T., Kim, K.K., Park, H.C., Lee, S.M., Kim, Y.G. and Son, H.-J., 2010. Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresource technology, 101(10), 3602-3608, https://doi.org/10.1016/j.biortech.2009.12.111.

Chen, S.-Q., Mikkelsen, D., Lopez-Sanchez, P., Wang, D., Martinez-Sanz, M., Gilbert, E.P., Flanagan, B.M. and Gidley, M.J., 2017. Characterisation of bacterial cellulose from diverse Komagataeibacter strains and their application to construct plant cell wall analogues. Cellulose, 24, 1211-1226, https://doi.org/10.1007/s10570-017-1203-3.

El-Gendi, H., Taha, T.H., Ray, J.B. and Saleh, A.K., 2022. Recent advances in bacterial cellulose: a low-cost effective production media, optimization strategies and applications. Cellulose, 29(14), 7495-7533, https://doi.org/10.1007/s10570-022-04697-1.

Sperotto, G., Stasiak, L.G., Godoi, J.P.M.G., Gabiatti, N.C. and De Souza, S.S., 2021. A review of culture media for bacterial cellulose production: complex, chemically defined and minimal media modulations. Cellulose, 28, 2649-2673, https://doi.org/10.1007/s10570-021-03754-5.

Dayal, M.S., Goswami, N., Sahai, A., Jain, V., Mathur, G. and Mathur, A., 2013. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers, 94(1), 12-16, https://doi.org/10.1016/j.carbpol.2013.01.018.

Lee, K.-Y., Buldum, G., Mantalaris, A. and Bismarck, A., 2014. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience, 14(1), 10-32, https://doi.org/10.1002/mabi.201300298.

Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Edinur, H.A., Kari, Z.A., Noor, N.H.M. and Ray, R.R., 2021. Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 22(23), https://doi.org/10.3390/ijms222312984.

Pandit, A. and Kumar, R., 2021. A review on production, characterization and application of bacterial cellulose and its biocomposites. Journal of Polymers and the Environment, 29(9), 2738-2755, https://doi.org/10.1007/s10924-021-02079-5.

Srivastava, S. and Mathur, G., 2022. Komagataeibacter saccharivorans strain BC-G1: an alternative strain for production of bacterial cellulose. Biologia, 77(12), 3657-3668, https://doi.org/10.1007/s11756-022-01222-4.

Hong, F. and Qiu, K., 2008. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers, 72(3), 545-549, https://doi.org/10.1016/j.carbpol.2007.09.015.

Aydin, Y.A. and Aksoy, N.D., 2010, June. Utilization of vinegar for isolation of cellulose producing acetic acid bacteria. AIP Conference Proceedings, 1247(1), 340-348, https://doi.org/10.1063/1.3460242.

Hestrin, S. and Schramm, M., 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345-352, https://doi.org/10.1042%2Fbj0580345.

Singh, O., Panesar, P.S. and Chopra, H.K., 2017. Isolation and characterization of cellulose producing bacterial isolate from rotten grapes. Biosciences Biotechnology Research Asia, 14(1), 373-380, https://doi.org/10.13005/ bbra/2455.

Singhsa, P., Narain, R. and Manuspiya, H., 2018. Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571-1581, https://doi.org/10.1007/s10570-018-1699-1.

Vasconcelos, N.F., Andrade, F.K., Vieira, L.D.A.P., Vieira, R.S., Vaz, J.M., Chevallier, P., Mantovani, D., Borges, M.D.F. and Rosa, M.D.F., 2020. Oxidized bacterial cellulose membrane as support for enzyme immobilization: properties and morphological features. Cellulose, 27(6), 3055-3083, https://doi.org/10.1007/s10570-020-02966-5.

Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V. and Koutinas, A., 2015. Bacterial cellulose production from industrial waste and by-product streams. International Journal of Molecular Sciences, 16(7), 14832-14849, https://doi.org/10.3390/ijms160714832.

Gopu, G. and Govindan, S., 2018. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes. Preparative Biochemistry and Biotechnology, 48(9), 842-852, https://doi. org/10.1080/10826068.2018.1513032.

Singh, R., Mathur, A., Goswami, N. and Mathur, G., 2016. Effect of carbon sources on physicochemical properties of bacterial cellulose produced from Gluconacetobacter xylinus MTCC 7795. e-Polymers, 16(4), 331-336, https://doi.org/10.1515/epoly-2016-0047.

Vielreicher, M., Kralisch, D., Völkl, S., Sternal, F., Arkudas, A. and Friedrich, O., 2018. Bacterial nanocellulose stimulates mesenchymal stem cell expansion and formation of stable collagen-I networks as a novel biomaterial in tissue engineering. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-27760-z.

Ciolacu, D., Ciolacu, F. and Popa, V.I., 2011. Amorphous cellulose-structure and characterization. Cellulose Chemistry and Technology, 45(1-2), 13-21.

Nelson, M.L. and O'Connor, R.T., 1964. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. Journal of Applied Polymer Science, 8(3), 1311-1324. https://doi.org/10.1002/app.30165.

Barud, H.S., Ribeiro, C.A., Crespi, M.S., Martines, M.A.U., Dexpert-Ghys, J., Marques, R.F.C., Messaddeq, Y. and Ribeiro, S.J.L., 2007. Thermal characterization of bacterial cellulose-phosphate composite membranes. Journal of Thermal Analysis and Calorimetry, 87(3), 815-818. https://doi.org/10.1007/s10973-006-8170-5.

Jayalakshmi, A., Sivarajasekar, N., Kumar, M. and Mekala, V., 2022. Growth kinetics of cellulose producing bacteria. AIP Conference Proceedings, 2466, https://doi.org/10.1063/5.0109690.

Xiao, C., Zhang, T., Zheng, Y., Cosgrove, D.J. and Anderson, C.T., 2016. Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiology, 170(1), 234-249. https://doi.org/10.1104/pp.15.01395.

Stanbury, P.F., Whitaker, A. and Hall, S.J., 2013. Principles of Fermentation Technology. 2nd ed. [e-book] Burlington: Elsevier.

Molina-Ramírez, C., Castro, M., Osorio, M., Torres-Taborda, M., Gómez, B., Zuluaga, R., Gómez, C., Gañán, P., Rojas, O.J. and Castro, C., 2017. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials, 10(6), https://doi.org/10.3390/ma10060639.

Panesar, P.S., Chavan, Y., Chopra, H. and Kennedy, J.F., 2012. Production of microbial cellulose: Response surface methodology approach. Carbohydrate Polymers, 87(1), 930-934, https://doi.org/10.1016/j.carbpol.2011.08.002.

Panesar, P.S., Chavan, Y.V., Bera, M.B., Chand, O. and Chopra, H., 2009. Evaluation of Acetobacter strain for the production of microbial cellulose. Asian Journal of Chemistry, 21(10), 99-102, https://api.semanticscholar.org/CorpusID:98711508.

Lin, S.-P., Huang, Y.-H., Hsu, K.-D., Lai, Y.-J., Chen, Y.-K. and Cheng, K.-C., 2016. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydrate Polymers, 151, 827-833, https://doi.org/10.1016/j.carbpol.2016.06.032.

Yim, S.M., Song, J.E. and Kim, H.R., 2017. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 59 (part A), 26-36, https://doi.org/10.1016/j.procbio.2016.07.001.

Rangaswamy, B.E., Vanitha, K.P. and Hungund, B.S., 2015. Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science, 2015(1), https://doi.org/10.1155/2015/280784.

Mathur, G., Dua, A., Das, A.R., Kaur, H., Kukal, S., Sharma, P., Goswami, N., Sahai, A. and Mathur, A., 2015. Bacteria cellulose: biopolymer from Gluconacetobacter xylinus. Macromolecular Symposia, 347(1), 27-31, https://doi.org/10.1002/masy.201400041.

Claro, A.M., Do Amaral, N.C., Colturato, V.M.M., Aleixo, N.A., Paiva, R., Cruz, S.A., Monteiro, G.C., De Carvalho, G.S.G., Nogueira, F.A.R., Deffune, E., Iemma, M.R.D.C. and Barud, H.D.S., 2022. Siloxane-modified bacterial cellulose as a promising platform for cell culture. Cellulose, 29(18), 9597-9608, https://doi.org/10.1007/s10570-022-04872-4.

Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Edinur, H.A., Kari, Z.A., Noor, N.H.M. and Ray, R.R., 2021. Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 22(23), 12984, https://doi.org/10.3390%2Fijms222312984.

Oh, S.Y., Yoo, D.I., Shin, Y. and Seo, G., 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3), 417-428, https://doi.org/10.1016/j.carres.2004.11.027.

Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A. and Bhat, R., 2012. Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. International Food Research Journal, 19(1), 153-158.

Bertocchi, C., Delneri, D., Signore, S., Weng, Z. and Bruschi, C.V., 1997. Characterization of microbial cellulose from a high-producing mutagenized Acetobacter pasteurianus strain. Biochimica et Biophysica Acta (BBA)-General Subjects, 1336(2), 211-217, https://doi.org/10.1016/S0304-4165(97)00030-5.

Mikkelsen, D., Flanagan, B.M., Dykes, G.A. and Gidley, M.J., 2009. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107(2), 576-583, https://doi.org/10.1111/j.1365-2672.2009.04226.x.

Stumpf, T.R., Pértile, R.A., Rambo, C.R. and Porto, L.M., 2013. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Materials Science and Engineering: C, 33(8), 4739-4745, https://doi.org/10.1016/j.msec.2013.07.035.

Surma-Ślusarska, B., Presler, S. and Danielewicz, D., 2008. Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres and Textiles in Eastern Europe, 16(4), 108-111.

George, J., Ramana, K.V., Sabapathy, S.N., Jagannath, J.H. and Bawa, A.S., 2005. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties. International Journal of Biological Macromolecules, 37(4), 189-194, https://doi.org/10.1016/j.ijbiomac.2005.10.007.

Pancholi, M.J., Khristi, A.M., A.K. and Bagchi, D., 2023. Comparative analysis of lignocellulose agricultural waste and pre-treatment conditions with FTIR and machine learning modeling. BioEnergy Research, 16(1), 123-137, https://doi.org/10.1007/s12155-022-10444-y.

Vazquez, A., Foresti, M.L., Cerrutti, P. and Galvagno, M.A., 2013. Bacterial cellulose from simple and low-cost production media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21, 545-554, https://doi.org/10.1007/s10924-012-0541-3.