Effect of Bleaching Containing Polydopamine and Chitosan-Modified TiO2 on the Level of Brightness and Microhardness of Teeth
Main Article Content
Abstract
Teeth bleaching techniques generally use high concentrations of bleaching agents such as H2O2, which can harm dental health. Therefore, an alternative method is needed to minimize the use of H2O2. The aim of this study was to determine the characteristics and effectiveness of a teeth-whitening gel made from polydopamine and chitosan-modified TiO2. The research phase began with the extraction of TiO2 from Tulungagung sand using the leaching method, and then the TiO2 was modified with polydopamine and chitosan. XRD, FTIR, and TEM were used to characterize the fabrication results. The results of XRD analysis showed that the diffraction peaks of polydopamine and chitosan-modified TiO2 had the characteristics of anatase phase TiO2. Functional groups of polydopamine and chitosan-modified TiO2 were identified from the results of FTIR analysis. The TEM image showed the spherical shape with a core-shell structure, where the TiO2 particles were covered with polydopamine and chitosan. The addition of H2O2 at 3% to the polydopamine and chitosan-modified TiO2 gel transformed it into a tooth whitening agent. After that, the teeth without soaking and those soaked in cola were bleached with the whitening gel using visible light irradiation three times for 15 min each time. The bleaching results showed that the 0.25-g polydopamine-modified TiO2 formula whitening gel effectively whitened teeth without causing a significant change in the microhardness value of the tooth surfaces, even at low concentrations of H2O2
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
Sun, L., Liang, S., Sa, Y., Wang, Z., Ma, X., Jiang, T. and Wang, Y., 2011. Surface alteration of human tooth enamel subjected to acidic and neutral 30% hydrogen peroxide. Journal of Dentistry, 39(10), 686-692, http://doi.org/10.1016/j.jdent.2011.07.011.
Meireles, S.S., Fontes, S.T., Coimbra, L.A.A., Bona, Á.D. and Demarco, F.F., 2012. Effectiveness of different carbamide peroxide concentrations used for tooth bleaching: an in vitro study. Journal of Applied Oral Science, 20, 186-191, https://doi.org/10.1590/S1678-77572012000200011.
De Geus, J.L., Wambier, L.M., Kossatz, S., Loguercio, A.D. and Reis, A., 2016. At-home vs in-office bleaching: a systematic review and meta-analysis. Operative Dentistry, 41(4), 341-356, https://doi.org/10.2341/15-287-LIT.
Mushashe, A.M., Coelho, B.S., Garcia, P.P., da Cunha, L.F., Correr, G.M. and Gonzaga, C.C., 2018. Effect of different bleaching protocols on whitening efficiency and enamel superficial microhardness. Journal of Clinical and Experimental Dentistry, 10(8), https://doi.org/10.4317/jced.54967.
Ghanbarzadeh, M., Ahrari, F., Akbari, M. and Hamzei, H., 2015. Microhardness of demineralized enamel following home bleaching and laser-assisted in office bleaching. Journal of Clinical and Experimental Dentistry, 7(3), https://doi.org/10.4317/jced.51705.
Giannini, M., Silva, A.P., Cavalli, V. and Leme, A.F.P., 2006. Effect of carbamide peroxide-based bleaching agents containing fluoride or calcium on tensile strength of human enamel. Journal of Applied Oral Science, 14, 82-87, https://doi.org/10.1590/S1678-77572006000200004.
Dantas, A.A.R., Bortolatto, J.F., Roncolato, A., Merchan, H., Floros, M.C., Kuga, M.C. and Junior, O.B.O., 2015. Can a bleaching toothpaste containing Blue Covarine demonstrate the same bleaching as conventional techniques? An in vitro, randomized and blinded study. Journal of Applied Oral Science, 23(6), 609-613, https://doi.org/10.1590/1678-775720150268.
Yadav, S., 2017. Bleaching effectiveness and tooth sensitivity of inoffice hydrogen peroxide containing titanium dioxide based bleaching agent: a systematic review. Research and Reviews: Journal of Dental Sciences, 5(1), 96-101.
Menezes, R.P.D., Silva, P.D., Leal, P.C. and Faria-e-Silva, A.L., 2018. Impact of 35% hydrogen peroxide on color and translucency changes in enamel and dentin. Brazilian Dental Journal, 29(1), 88-92, https://doi.org/10.1590/0103-6440201801553.
Komatsu, O., Nishida, H., Sekino, T. and Yamamoto, K., 2014. Application of titanium dioxide nanotubes to tooth whitening. Nano Biomedicine, 6(2), 63-72.
Istiqomah, I., Putri, A., Patmawati, T., Rohmawati, L. and Setyarsih, W., 2019. Ekstraksi titanium dioksida (TiO2) anatase menggunakan metode leaching dari pasir mineral tulungagung. Akta Kimia Indonesia, 4(2), 145-151. (in Indonesian)
Rohmawati, L., Istiqoah, Pratama, A.A., Setyarsih, W., Putri, N.P., Munasir and Darminto, 2022. The characteristics of TiO2 anatase from Tulungagung sand as an antibacterial material. Nanosystems: Physics, Chemistry, Mathematics, 13(6), 640-648, https://doi.org/10.17586/2220-8054-2022-13-6-640-648.
Lalasari L.H., Firdiyono F., Yuwono A.H., Harjanto S. and Suharno, 2012. Preparation, decomposition and Ccharacterizations of Bangka-Indonesia Ilmenite (FeTiO3) derived by hydrothermal method using concentrated NaOH solution. Advanced Materials Research, 535-537, 750-756.
Ginting, L.I.B., Manaf, A., Astuti, W., Supriyatna, Y.I. and Bahfie, F., 2023. Study of titanium dioxide (TiO2) extraction process from Ilmenite Banten. IOP Conference Series: Earth and Environmental Science, 1201, https://doi.org/10.1088/1755-1315/1201/1/012092.
Ozcetin, H.K. and Surmelioglu, D., 2020. Effects of bleaching gel containing TiO2 and chitosan on tooth surface roughness, microhardness and colour. Australian Dental Journal, 65(4), 269-277, https://doi.org/10.1111/adj.12786.
Rani, M. and Shanker, U., 2020. Green synthesis of TiO2 and its photocatalytic activity. In: C.M. Hussain and A.K. Mishra, eds. Handbook of Smart Photocatalytic Materials. Amsterdam: Elsevier Inc, pp. 11-61.
Tomás‐Gamasa, M. and Mascareñas, J.L., 2020. TiO2‐based photocatalysis at theiInterface with biology and biomedicine. ChemBioChem, 21(3), 294-309, https://doi.org/10.1002/cbic.201900229.
Hamza, H.S.E.D., Hassan, S. and Mosallam, O., 2021. Effect of an in-office bleaching agent containing two different concentrations of titanium dioxide nano particles on the color and surface roughness of enamel. Egyptian Dental Journal, 67(1), 809-816, https://doi.org/10.21608/EDJ.2020.47230.1303.
Torres, C.R.G., Wiegand, A., Sener, B. and Attin, T., 2010. Influence of chemical activation of a 35% hydrogen peroxide bleaching gel on its penetration and efficacy—In vitro study. Journal of Dentistry, 38(10), 838-846, https://doi.org/10.1016/j.jdent.2010.07.002.
Kishi, A., Otsuki, M., Sadr, A., Ikeda, M. and Tagami, J., 2011. Effect of light units on tooth Bleaching with visible-light activating titanium dioxide photocatalyst. Dental Materials Journal, 30(5), 723-729, https://doi.org/10.4012/dmj.2010-210.
Brenneisen, P., Sies, H. and Scharffetter-Kochanek, K., 2002. Ultraviolet-B irradiation and matrix metalloproteinases. Annals of the New York Academy of Sciences, 973(1), 31-43, https://doi.org/10.1111/j.1749-6632.2002.tb04602.x.
Ebersole, J.L., Kirakodu, S., Novak, M.J., Stromberg, A.J., Shen, S., Orraca, L., Gonzalez-Martinez, J., Burgos, A. and Gonzales, O.A., 2014. Cytokine gene expression profiles during initiation, progession and resolution of periodontitis. Journal of Clinical Periodontology, 41, 853-861, https://doi.org/10.1111/jcpe.12286.
Luong, M.N., Otsuki, M., Shimada, Y., Ei, T.Z., Sumi, Y. and Tagami, J., 2018. Effect of lights with various wavelengths on bleaching by 30% hydrogen peroxide. Laser in Medical Science, 34, 901-906, https://doi.org/10.1007/s10103-018-2670-y.
Zhang, F., Wu, C., Zhou, Z., Wang, J., Bao, W., Dong, L., Zhang, Z., Ye, J., Liao, L. and Wang, X., 2018. Blue-light-activated nano-TiO2@PDA for highly effective and nondestructive tooth whitening. ACS Biomaterials Science and Engineering, 4(8), 3072-3077, https://doi.org/10.1021/acsbiomaterials.8b00548.
Suemori, T., Kato, J., Nakazawa, T., Akashi, G. and Hirai, Y., 2008. A new non-vital tooth bleaching method using titanium dioxide and 3.5% hydrogen peroxide with a 405-nm diode laser or a halogen lamp. Laser Physics Letters, 5(6), 454-459.
Sun, X., Yan, L., Xu, R., Xu, M. and Zhu, Y., 2019. Surface modification of TiO2 with polydopamine and its effect on photocatalytic degradation mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 199-209.
Khan, Z., Shanker, R., Um, D., Jaiswal, A. and Ko, H., 2018. Bioinspired polydopamine and composites for biomedical applications. In: A. Khan, M. Jawaid, A.A.P. Khan and A.M. Asiri, eds. Electrically Conductive Polymer and Polymer Composites: From Synthesis to Biomedical Applications. New York: John Wiley and Sons Inc, pp. 1-29.
Liebscher, J., Mrówczyński, R., Scheidt, H.A., Filip, C., Hădade, N.D., Turcu, R., Bende, A. and Beck, S., 2013. Structure of polydopamine: a never-ending story? Langmuir, 29(33), 10539-10548, https://doi.org/10.1021/la4020288.
Muşat, V., Anghel, E.M., Zaharia, A., Atkinson, I., Mocioiu, O.C., Buşilă, M. and Alexandru, P., 2021. A chitosan–agarose polysaccharide-based hydrogel for biomimetic remineralization of dental enamel. Biomolecules, 11(8), https://doi.org/10.3390/biom11081137.
Pini, N.I.P., Piccelli, M.R., Vieira-Junior, W.F., Ferraz, L.N., Aguiar, F.H.B. and Lima, D.A.N.L., 2022. In-office tooth bleaching with chitosan-enriched hydrogen peroxide gels: In vitro results. Clinical Oral Investigations, 26(1), 471-479, https://doi.org/10.1007/s00784-021-04021-4.
Hamman, J.H., 2010. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine Drugs, 8(4), 1305-1322.
Feng, Y. and Xia, W., 2011. Preparation, characterization and antibacterial activity of water-soluble O-fumaryl-chitosan. Carbohydrate Polymers, 83(3), 1169-1173.
Arnaud, T.M.S., de Barros Neto, B. and Diniz, F.B., 2010. Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. Journal of Dentistry, 38(11), 848-852, https://doi.org/10.1016/j.jdent.2010.06.004.
Podust, T.V., Kulik, T.V., Palyanytsya, B.B., Gun’Ko, V.M., Tóth, A., Mikhalovska, L., Menyhárd, A. and László, K., 2014. Chitosan-nanosilica hybrid materials: preparation and properties. Applied Surface Science, 320, 563-569, https://doi.org/10.1016/j.apsusc.2014.09.038.
Li, H., Du, Y., Xu, Y., Zhan, H. and Kennedy, J.F., 2004. Interactions of cationized chitosan with components in a chemical pulp suspension. Carbohydrate Polymers, 58(2), 205-214, https://doi.org/10.1016/j.carbpol.2004.06.044.
Pratama, A.A. and Rohmawati, L., 2021. Analisis kristalinitas TiO2@PDA hasil leaching ilmenite tulungagung. Inovasi Fisika Indonesia, 10(2), 68-72, https://doi.org/10.26740/ifi.v10n2.p68-72. (in Indonesian)
Almejrad, L., Almansour, A., Bartlett, D. and Austin, R., 2024. CAD/CAM leucite-reinforced glass-ceramic for simulation of attrition in human enamel in vitro. Dental Materials, 40, 173-178, https://doi.org/10.1016/j.dental.2023.11.004.
Saranya, K.S., Padil, V.V.T., Senan, C., Pilankatta, R., Saranya, K., George, B., Wacławek, S. and Černík, M., 2018. Green synthesis of high temperature stable anatase titanium dioxide nanoparticles using gum kondagogu: characterization and solar driven photocatalytic degradation of organic dye. Nanomaterials, 8(12), https://doi.org/10.3390/nano8121002.
Kalaiarasi, S. and Jose, M., 2017. Dielectric functionalities of anatase phase titanium dioxide nanocrystals synthesized using water-soluble complexes. Applied Physics A, 123(8), https://doi.org/10.1007/s00339-017-1121-0.
Habiba, U., Joo, T.C., Shezan, S.K.A., Das, R., Ang, B.C. and Afifi, A.M., 2019. Synthesis and characterization of chitosan/TiO2 nanocomposite for the adsorption of Congo red. Desalination and Water Treatment, 164, 361-367, https://doi.org/10.5004/dwt.2019.24391.
Abisharani, J.M., Devikala, S., Kumar, R.D., Arthanareeswari, M. and Kamaraj, P., 2019. Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract. Materials Today: Proceedings, 14(Part 2), 302-307, https://doi.org/10.1016/j.matpr.2019.04.151.
Al-Zahrani, H., El-Waseif, A. and El-Ghwas, D.E., 2018. Biosynthesis and evaluation of TiO2 and ZnO nanoparticles from in vitro stimulation of Lactobacillus johnsonii. Journal of Innovations in Pharmaceutical and Biological Sciences, 5(1), 16-20.
Żeglin, J., Piotrowski, G.P. and Piękos, R., 2006. A study of interaction between hydrogen peroxide and silica gel by FTIR spectroscopy and quantum chemistry. Journal of Molecular Structure, 794(1-3), 83-91, https://doi.org/10.1016/j.molstruc.2006.01.043.
Queiroz, M.F., Teodosio Melo, K.R., Sabry, D.A., Sassaki, G.L. and Rocha, H.A.O., 2014. Does the use of chitosan contribute to oxalate kidney stone formation? Marine Drugs, 13(1), 141-158, https://doi.org/10.3390/md13010141.
Singh, L.K. and Koiry, B.P., 2018. Natural dyes and their effect on efficiency of TiO2 based DSSCs: a comparative study. Materials Today: Proceedings, 5(1), 2112-2122, https://doi.org/10.1016/j.matpr.2017.09.208.
Saravanan, S. and Dubey, R.S., 2021. Optical and morphological studies of TiO2 nanoparticles prepared by sol-gel method. Materials Today: Proceedings, 47(9), 1811-1814, https://doi.org/10.1016/j.matpr.2021.03.207.
Cui, J., Ma, C., Li, Z., Wu, L., Wei, W., Chen, M., Peng, B. and Deng, Z., 2016. Polydopamine-functionalized polymer particles as templates for mineralization of hydroxyapatite: biomimetic and in vitro bioactivity. RSC Advances, 6(8), 6747-6755, https://doi.org/10.1039/C5RA24821C.
Rahoui, N., Hegazy, M., Jiang, B., Taloub, N. and Huang, Y.D., 2018. Particles size estimation of polydopamine based polymeric nanoparticles using near-infrared spectroscopy combined with linear regression method. American Journal of Analytical Chemistry, 9(5), 273-285, https://doi.org/10.4236/ajac.2018.95021.
Jeon, W.-Y., Kim, H.-H. and Choi, Y.-B., 2021. Development of a glucose sensor based on glucose dehydrogenase using polydopamine-functionalized nanotubes. Membranes, 11(6), https://doi.org/10.3390/membranes11060384.
Ghorbani, F., Zamanian, A. and Torabinejad, B., 2020. The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers. Journal of Polymer Engineering, 40(2), 109-119, https://doi.org/10.1515/polyeng-2019-0219.
Chen, F., Yu, W., Qie, Y., Zhao, L., Zhang, H. and Guo, L.H., 2019. Enhanced photocatalytic removal of hexavalent chromium through localized electrons in polydopamine-modified TiO2 under visible irradiation. Chemical Engineering Journal, 373, 58-67, https://doi.org/10.1016/j.cej.2019.05.022.
Ahghari, M.A., Ahghari, M.R., Kamalzare, M. and Maleki, A., 2022. Design, synthesis, and characterization of novel eco‑friendly chitosan‑AgIO3 bionanocomposite and study its antibacterial activity. Scientific Reports, 12, https://doi.org/10.1038/s41598-022-14501-6 .
Hussein, E.M., Desoky, W.M., Hanafy, M.F. and Guirguis, O.W., 2021. Effect of TiO2 nanoparticles on the structural configurations and thermal, mechanical, and optical properties of chitosan/TiO2 nanoparticle composites. Journal of Physics and Chemistry of Solids, 152, https://doi.org/10.1016/j.jpcs.2021.109983.
Tanno, Y., Otsuki, M., Nishimura, M., Luong, M.N., Takagaki, T., Nakajima, M., Sumi, Y. and Tagami, J., 2020. Effect of ultraviolet ray on tooth bleaching using titanium dioxide photocatalyst. Asian Pacific Journal of Dentistry, 20(2), 35-40, https://doi.org/10.47416/apjod.20-0277.
Razali, M.H., Dris, M.R.M. and Rudin, N.N.S.M., 2009. Photodegradation of methyl orange dye using titanium dioxide photocatalyst. Journal of Sustainability Science and Management, 4(1), 49-55.
Garcia, J.C. and Takashima, K.J, 2003. Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 155(1-3), 215-222, https://doi.org/10.1016/S1010-6030(02)00370-2.
Chen, S. and Liu, Y., 2007. Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere, 67(5), 1010-1017, https://doi.org/10.1016/j.chemosphere.2006.10.054.
Kodir, A.I.A., 2014. Teknik bedah dengan skalpel pada hiperpigmentasi gingiva. Odonto Dental Journal, 1(2), 40-45. (in Indonesian)
Jiang, Y., Shi, K., Tang, H. and Wang, Y., 2019. Enhanced wettability and wear resistance on TiO2/PDA thin films prepared by sol-gel dip coating. Surface and Coatings Technology, 375, 334-340, https://doi.org/10.1016/j.surfcoat.2019.07.051.
Zanin, F., 2016. Recent advances in dental bleaching with laser and LEDs. Photomedicine and Laser Surgery, 34(4), 135-136, https://doi.org/10.1089/pho.2016.4111.
Lugo-Varillas, J.G., Tinedo-López, P.L., Watanabe, O.G., Correa, M.A., Álvarez, V.E. and Hermoza, N.M., 2020. Influence of pH value of bleaching gels on surface roughness of bovine enamel. Odovtos-International Journal of Dental Sciences, 22(2), 113-123.
Klaric, E., Rakic, M., Sever, I., Milat, O., Par, M. and Tarle, Z., 2015. Enamel and dentin microhardness and chemical composition after experimental light-activated bleaching. Operative Dentistry, 40(4), E132-E141, https://doi.org/10.2341/14-148-L.
Bistey, T., Nagy, I.P., Simó, A. and Hegedűs, C., 2007. In vitro FT-IR study of the effects of hydrogen peroxide on superficial tooth enamel. Journal of Dentistry, 35(4), 325-330, https://doi.org/10.1016/j.jdent.2006.10.004.
Rodrigues, J.A., Oliveira, G.P.F. and Amaral, C.M., 2007. Effect of thickener agents on dental enamel microhardness submitted to at-home bleaching. Brazilian Oral Research, 21(2), 170-175, https://doi.org/10.1590/S1806-83242007000200013.
Kwon, S.R., Kurti, S.R., Oyoyo, U. and Li, Y., 2015. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel. Odontology, 103, 274-279, https://doi.org/10.1007/s10266-014-0163-4.
Sharma, A., Anggarwal, N., Rastogi, S., Choudhury, R. and Tripathi, S., 2017. Effectiveness of platelet-rich fibrin in the management of pain and delayed wound healing associated with established alveolar osteitis (dry socket). European Journal of Dentistry, 11(4), 508-513, https://doi.org/10.4103/ejd.ejd_346_16.
Hanin, S. and Thenmozhi, M.S., 2018. Association between dental erosion and carbonated drinks. Drug Invention Today, 10(11), 2335-2337.
Sarembe, S., Kiesow, A., Pratten, J., Webster, C., 2022. The impact on dental staining caused by beverages in combination with chlorhexidine digluconate. European Journal of Dentistry, 16(4), 911-918, https://doi.org/10.1055/s-0041-1742123.
Wang, Y., Wen, X., Jia, Y., Huang, M., Wang, F., Zhang, X., Bai, Y., Yuan, G. and Wang, Y., 2020. Piezo-catalysis for nondestructive tooth whitening. Nature Communications, 11, 1-11, https://doi.org/10.1038/s41467-020-15015-3.
Papathanasiou, A., Kastali, S., Perry, R.D. and Kugel, G., 2002. Clinical evaluation of a 35% hydrogen peroxide in-office whitening system. Compendium of Continuing Education in Dentistry, 23, 335-338.
Yarborough, D.K., 1991. The safety and efficacy of tooth bleaching: a review of the literature 1988-1990. Compendium, 12(3), 191-196.
Kuliński, W. and Mróz, J., 2023. Physical management in Algodystrophic syndrome. A clinical study. Acta Balneologica, 5(177), 271-276, https://doi.org/10.36740/ABAL202305101.
Lee, Y., Kwon, S. -K. and Park, J.-W., 2008. The effectiveness of sealing technique on in-office bleaching. The Journal of Korean Academy of Conservative Dentistry, 33(5), 463-471, https://doi.org/10.5395/JKACD.2008.33.5.463.